Skip to main content
Log in

Angularly resolved photoionization dynamics in atoms and molecules combining temporally and spectrally resolved experiments at ATTOLab and Synchrotron SOLEIL

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We report results for XUV-IR two-photon ionization of Ar, Ne, NO, and O2, where an XUV attosecond pulse train is superimposed with a synchronized IR pulse, obtained at the ATTOLab laser facility using electron–ion coincidence 3D momentum spectroscopy. Temporally resolved photoelectron angular distributions providing angle-resolved time-delays for np ionization of Ar and Ne, achieved by reconstruction of attosecond beating by interference of two-photon transitions through a unified formalism (Joseph et al. in J Phys B At Mol Opt Phys 53:184007, 2020), are summarized. For inner valence XUV-IR dissociative photoionization of NO and O2 molecules, we report electron–ion kinetic energy correlation diagrams and disentangle the dissociative photoionization processes relying on parallel XUV experiments at Synchrotron SOLEIL. For ionization into the NO+(\({c}^{3}\Pi\)) ionic state, extending the formalism developed for single-photon ionization, we focus on photoelectron angular distributions averaged on the delay between the XUV and the IR field in the field frame, molecular frame, and electron frame of reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Joseph, F. Holzmeier, D. Bresteau, C. Spezzani, T. Ruchon, J.F. Hergott, O. Tcherbakoff, P. D’Oliveira, J.C. Houver, D. Dowek, J. Phys. B At. Mol. Opt. Phys. 53, 184007 (2020). https://doi.org/10.1088/1361-6455/ab9f0d

    Article  ADS  Google Scholar 

  2. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H.G. Muller, P. Agostini, Science 292, 1689 (2001). https://doi.org/10.1126/science.1059413

    Article  ADS  Google Scholar 

  3. K. Klünder, J.M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, A. L’Huillier, Phys. Rev. Lett. 106, 143002 (2011)

    Article  ADS  Google Scholar 

  4. M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001). https://doi.org/10.1038/35107000

    Article  ADS  Google Scholar 

  5. M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A.L. Cavalieri, Y. Komninos, Th Mercouris, C.A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A.M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, V.S. Yakovlev, Science 328, 1658 (2010)

    Article  ADS  Google Scholar 

  6. D. Guenot, D. Kroon, E. Balogh, E.W. Larsen, M. Kotur, M. Miranda, T. Fordell, P. Johnsson, J. Mauritsson, M. Gisselbrecht, K. Varjù, C.L. Arnold, T. Carette, A.S. Kheifets, E. Lindroth, A. LʼHuillier, J.M. Dahlström, J. Phys. B At. Mol. Opt. Phys. 47, 245602 (2014). https://doi.org/10.1088/0953-4075/47/24/245602

    Article  ADS  Google Scholar 

  7. C. Palatchi, J.M. Dahlström, A.S. Kheifets, I.A. Ivanov, D.M. Canaday, P. Agostini, L.F. DiMauro, J. Phys. B At. Mol. Opt. Phys. 47, 245003 (2014). https://doi.org/10.1088/0953-4075/47/24/245003

    Article  ADS  Google Scholar 

  8. C. Cirelli, C. Marante, S. Heuser, C.L.M. Petersson, Á.J. Galán, L. Argenti, S. Zhong, D. Busto, M. Isinger, S. Nandi, S. Maclot, L. Rading, P. Johnsson, M. Gisselbrecht, M. Lucchini, L. Gallmann, J.M. Dahlström, E. Lindroth, A. L’Huillier, F. Martín, U. Keller, Nat. Commun. 9, 955 (2018). https://doi.org/10.1038/s41467-018-03009-1

    Article  ADS  Google Scholar 

  9. S. Heuser, Á. Jiménez Galán, C. Cirelli, C. Marante, M. Sabbar, R. Boge, M. Lucchini, L. Gallmann, I. Ivanov, A.S. Kheifets, J.M. Dahlström, E. Lindroth, L. Argenti, F. Martín, U. Keller, Phys. Rev. A 94, 063409 (2016). https://doi.org/10.1103/PhysRevA.94.063409

    Article  ADS  Google Scholar 

  10. J. Fuchs, N. Douguet, S. Donsa, F. Martin, J. Burgdörfer, L. Argenti, L. Cattaneo, U. Keller, Optica 7, 154 (2020). https://doi.org/10.1364/OPTICA.378639

    Article  ADS  Google Scholar 

  11. A. Autuori, D. Platzer, M. Lejman, G. Gallician, L. Maëder, A. Covolo, L. Bosse, M. Dalui, D. Bresteau, J.-F. Hergott, O. Tcherbakoff, H.J.B. Marroux, V. Loriot, F. Lépine, L. Poisson, R. Taïeb, J. Caillat, P. Salières, Sci. Adv. 8, eabl7594 (2022). https://doi.org/10.1126/sciadv.abl7594

    Article  Google Scholar 

  12. S. Haessler, B. Fabre, J. Higuet, J. Caillat, T. Ruchon, P. Breger, B. Carré, E. Constant, A. Maquet, E. Mével, P. Salières, R. Taïeb, Y. Mairesse, Phys. Rev. A 80, 011404 (2009). https://doi.org/10.1103/PhysRevA.80.011404

    Article  ADS  Google Scholar 

  13. M. Huppert, I. Jordan, D. Baykusheva, A. von Conta, H.J. Wörner, Phys. Rev. Lett. 117, 093001 (2016). https://doi.org/10.1103/PhysRevLett.117.093001

    Article  ADS  Google Scholar 

  14. I. Jordan, H.J. Wörner, J. Opt. 20, 024013 (2018). https://doi.org/10.1088/2040-8986/aaa078

    Article  ADS  Google Scholar 

  15. S. Nandi, E. Plésiat, S. Zhong, A. Palacios, D. Busto, M. Isinger, L. Neoričić, C. Arnold, R. Squibb, R. Feifel, P. Decleva, A. L'Huillier, F. Martín, M. Gisselbrecht, Sci. Adv. 6, eaba7762 (2020). https://doi.org/10.1126/sciadv.aba7762

    Article  ADS  Google Scholar 

  16. V. Loriot, A. Marciniak, S. Nandi, G. Karras, M. Hervé, E. Constant, E. Plésiat, A. Palacios, F. Martín, F. Lépine, J. Phys. Photon. 2, 024003 (2020). https://doi.org/10.1088/2515-7647/ab7b10

    Article  Google Scholar 

  17. D. Baykusheva, H.J. Wörner, J. Chem. Phys. 146, 124306 (2017). https://doi.org/10.1063/1.4977933

    Article  ADS  Google Scholar 

  18. P. Hockett, E. Frumker, D.M. Villeneuve, P.B. Corkum, J. Phys. B At. Mol. Opt. Phys. 49, 095602 (2016). https://doi.org/10.1088/0953-4075/49/9/095602

    Article  ADS  Google Scholar 

  19. J. Vos, L. Cattaneo, S. Patchkovskii, T. Zimmermann, C. Cirelli, M. Lucchini, A. Kheifets, A.S. Landsman, U. Keller, Science 360, 1326 (2018). https://doi.org/10.1126/science.aao4731

    Article  ADS  Google Scholar 

  20. X. Gong, W. Jiang, J. Tong, J. Qiang, P. Lu, H. Ni, R. Lucchese, K. Ueda, J. Wu, Phys. Rev. X 12, 011002 (2022). https://doi.org/10.1103/PhysRevX.12.011002

    Article  Google Scholar 

  21. L. Cattaneo, L. Pedrelli, R.Y. Bello, A. Palacios, P.D. Keathley, F. Martín, U. Keller, Phys. Rev. Lett. 128, 063001 (2022). https://doi.org/10.1103/PhysRevLett.128.063001

    Article  ADS  Google Scholar 

  22. L. Cattaneo, J. Vos, R.Y. Bello, A. Palacios, S. Heuser, L. Pedrelli, M. Lucchini, C. Cirelli, F. Martín, U. Keller, Nat. Phys. 14, 733 (2018). https://doi.org/10.1038/s41567-018-0103-2

    Article  Google Scholar 

  23. H. Ahmadi, E. Plésiat, M. Moioli, F. Frassetto, L. Poletto, P. Decleva, C.D. Schröter, T. Pfeifer, R. Moshammer, A. Palacios, F. Martin, G. Sansone, Nat. Commun. 13, 1242 (2022). https://doi.org/10.1038/s41467-022-28783-x

    Article  ADS  Google Scholar 

  24. S. Heck, D. Baykusheva, M. Han, J.-B. Ji, C. Perry, X. Gong, H.J. Wörner, Sci. Adv. 7, eabj8121 (2021). https://doi.org/10.1126/sciadv.abj8121

    Article  ADS  Google Scholar 

  25. F. Holzmeier, J. Joseph, J.C. Houver, M. Lebech, D. Dowek, R.R. Lucchese, Nat Commun 12, 7343 (2021). https://doi.org/10.1038/s41467-021-27360-y

    Article  ADS  Google Scholar 

  26. J. Rist, K. Klyssek, N.M. Novikovskiy, M. Kircher, I. Vela-Pérez, D. Trabert, S. Grundmann, D. Tsitsonis, J. Siebert, A. Geyer, N. Melzer, C. Schwarz, N. Anders, L. Kaiser, K. Fehre, A. Hartung, S. Eckart, LPh.H. Schmidt, M.S. Schöffler, V.T. Davis, J.B. Williams, F. Trinter, R. Dörner, P.V. Demekhin, T. Jahnke, Nat. Commun. 12, 6657 (2021). https://doi.org/10.1038/s41467-021-26994-2

    Article  ADS  Google Scholar 

  27. R.R. Lucchese, A. Lafosse, J.C. Brenot, P.M. Guyon, J.C. Houver, M. Lebech, G. Raseev, D. Dowek, Phys. Rev. A 65, 020702 (2002). https://doi.org/10.1103/PhysRevA.65.020702

    Article  ADS  Google Scholar 

  28. J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L.P.H. Schmidt, H. Schmidt-Böcking, Rep. Prog. Phys. 66, 1463 (2003). https://doi.org/10.1088/0034-4885/66/9/203

    Article  ADS  Google Scholar 

  29. M. Gisselbrecht, A. Huetz, M. Lavollée, T.J. Reddish, D.P. Seccombe, Rev. Sci. Instrum. 76, 013105 (2005). https://doi.org/10.1063/1.1832411

    Article  ADS  Google Scholar 

  30. Y.J. Picard, B. Manschwetus, M. Géléoc, M. Böttcher, E.M. Staicu Casagrande, N. Lin, T. Ruchon, B. Carré, J.-F. Hergott, F. Lepetit, R. Taïeb, A. Maquet, A. Huetz, Phys. Rev. A 89, 031401 (2014). https://doi.org/10.1103/PhysRevA.89.031401

    Article  ADS  Google Scholar 

  31. M. Lebech, J.C. Houver, D. Dowek, Rev. Sci. Instrum. 73, 1866 (2002). https://doi.org/10.1063/1.1458063

    Article  ADS  Google Scholar 

  32. X. Tang, G.A. Garcia, J.-F. Gil, L. Nahon, Rev. Sci. Instrum. 86, 123108 (2015). https://doi.org/10.1063/1.4937624

    Article  ADS  Google Scholar 

  33. http://www.roentdek.com/manuals/. (n.d.)

  34. DTPI platform: http://www.ismo.universite-paris-saclay.fr/spip.php?rubrique433. (n.d.)

  35. X.-J. Liu, R.R. Lucchese, A.N. Grum-Grzhimailo, Y. Morishita, N. Saito, G. Prümper, K. Ueda, J. Phys. B At. Mol. Opt. Phys. 40, 485 (2007). https://doi.org/10.1088/0953-4075/40/3/004

    Article  ADS  Google Scholar 

  36. D. Bresteau, C. Spezzani, O. Tcherbakoff, J. Lenfant, S.J. Weber, M. Dehlinger, E. Meltchakov, F. Delmotte, C. Bourassin-Bouchet, J. Im, Z. Chen, J. Caillaux, J. Zhang, M. Marsi, L. Barreau, L. Poisson, D. Dowek, M. Fanciulli, O. Heckmann, M.C. Richter, K. Hricovini, M. Sebdaoui, D. Dennetiere, F. Polack, T. Ruchon, FAB10: a user-oriented bandwidth-tunable extreme ultraviolet lightsource for investigations of femtosecond to attosecond dynamics in gas and condensed phases. Eur. Phys. J. Spec. Top. (2023). https://doi.org/10.1140/epjs/s11734-022-00752-x

    Article  Google Scholar 

  37. M. Luttmann, D. Bresteau, J.-F. Hergott, O. Tcherbakoff, T. Ruchon, Phys. Rev. Appl. 15, 034036 (2021). https://doi.org/10.1103/PhysRevApplied.15.034036

    Article  ADS  Google Scholar 

  38. M. Lebech, J.C. Houver, A. Lafosse, D. Dowek, C. Alcaraz, L. Nahon, R.R. Lucchese, J. Chem. Phys. 118, 9653 (2003). https://doi.org/10.1063/1.1570402

    Article  ADS  Google Scholar 

  39. A. Lafosse, M. Lebech, J.C. Brenot, P.M. Guyon, O. Jagutzki, L. Spielberger, M. Vervloet, J.C. Houver, D. Dowek, Phys. Rev. Lett. 84, 5987 (2000). https://doi.org/10.1103/PhysRevLett.84.5987

    Article  ADS  Google Scholar 

  40. J.A.R. Samson, in Advances in Atomic and Molecular Physics. ed. by D.R. Bates, I. Estermann (Academic Press, New York, 1966), pp.177–261

    Google Scholar 

  41. J.L. Dehmer, Le Journal de Physique Colloques 39, C4 (1978)

    Article  Google Scholar 

  42. D.J. Kennedy, S.T. Manson, Phys. Rev. A 5, 227 (1972). https://doi.org/10.1103/PhysRevA.5.227

    Article  ADS  Google Scholar 

  43. O. Geßner, Y. Hikosaka, B. Zimmermann, A. Hempelmann, R. Lucchese, J. Eland, P.-M. Guyon, U. Becker, Phys. Rev. Lett. 88, 193002 (2002). https://doi.org/10.1103/PhysRevLett.88.193002

    Article  ADS  Google Scholar 

  44. K. Veyrinas, N. Saquet, S. Marggi Poullain, M. Lebech, J.-C. Houver, R.R. Lucchese, D. Dowek, J. Chem. Phys. 151, 174305 (2019). https://doi.org/10.1063/1.5121620

    Article  ADS  Google Scholar 

  45. K. Veyrinas, V. Gruson, S.J. Weber, L. Barreau, T. Ruchon, J.-F. Hergott, J.-C. Houver, R.R. Lucchese, P. Salières, D. Dowek, Faraday Discuss. 194, 161 (2016). https://doi.org/10.1039/C6FD00137H

    Article  ADS  Google Scholar 

  46. S. Southworth, C.M. Truesdale, P.H. Kobrin, D.W. Lindle, W.D. Brewer, D.A. Shirley, J. Chem. Phys. 76, 143 (1982). https://doi.org/10.1063/1.442753

    Article  ADS  Google Scholar 

  47. J.M. Dahlström, D. Guénot, K. Klünder, M. Gisselbrecht, J. Mauritsson, A. L’Huillier, A. Maquet, R. Taïeb, Chem. Phys. 414, 53 (2013). https://doi.org/10.1016/j.chemphys.2012.01.017

    Article  Google Scholar 

  48. A. Lafosse, J.C. Brenot, A.V. Golovin, P.M. Guyon, K. Hoejrup, J.C. Houver, M. Lebech, D. Dowek, J. Chem. Phys. 114, 6605 (2001). https://doi.org/10.1063/1.1354182

    Article  ADS  Google Scholar 

  49. A. Lafosse, J.C. Brenot, P.M. Guyon, J.C. Houver, A.V. Golovin, M. Lebech, D. Dowek, P. Lin, R.R. Lucchese, J. Chem. Phys. 117, 8368 (2002). https://doi.org/10.1063/1.1512650

    Article  ADS  Google Scholar 

  50. W. Siu, F. Kelkensberg, G. Gademann, A. Rouzée, P. Johnsson, D. Dowek, M. Lucchini, F. Calegari, U. De Giovannini, A. Rubio, R.R. Lucchese, H. Kono, F. Lépine, M.J.J. Vrakking, Phys. Rev. A 84, 063412 (2011). https://doi.org/10.1103/PhysRevA.84.063412

    Article  ADS  Google Scholar 

Download references

Acknowledgements

JJ, FH, DB, TR, JCH, and DD are very grateful to late B. Carré, first coordinator of the ATTOLab project. We gratefully acknowledge the contribution of C. Spezzani, J. Lenfant, I. Vadillo-Torre, M. Billon, F. Polack, D. Dennetiere, J. F. Hergott, O. Tcherbakoff, and P. D’Oliveira (Atto Physics group at LIDYL, OPT2X consortium, SOLEIL Optics group) for the development of the FAB10 beamline within the ATTOLab facility. JJ, FH, JCH, and DD gratefully acknowledge J. Bozek, C. Nicolas, A. Milosavljevic, and E. Robert for their support and contribution during the experiments on the PLEIADES beamline, L Nahon, G. Garcia, and J F Gil for their assistance on the DESIRS beamline, the SOLEIL general staff for the smooth operation of the facility, and M. Hervé, M. Lebech, K. Veyrinas, S. M. Poullain, and M. Gisselbrecht for their contribution to the experiments at SOLEIL. We are thankful to J. Guigand, S. Lupone, N. Tournier, and O. Moustier (ISMO) for technical support in maintenance of the CIEL set-up. The support of “Investissements d’Avenir” LabEx PALM (ANR-10-LABX-0039-PALM) and EquipEx ATTOLAB (ANR-11-EQPX-0005-ATTOLAB), ASPIRE Marie Sklodowska-Curie ITN (EU-H2020 ID: 674960), Lidex OPT2X-2014 Université Paris-Saclay, EU-H2020-LASERLAB-EUROPE under Grant Agreement n°871124, and Région Ile de France SESAME2015- Pulse-X is acknowledged. The theoretical research performed by RRL at Lawrence Berkeley National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Dowek.

Additional information

S.I.: Ultrafast phenomena from attosecond to picosecond timescales: theory and experiments. Guest editors: Franck Lépine and Lionel Poisson.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J., Holzmeier, F., Bresteau, D. et al. Angularly resolved photoionization dynamics in atoms and molecules combining temporally and spectrally resolved experiments at ATTOLab and Synchrotron SOLEIL. Eur. Phys. J. Spec. Top. 232, 2031–2044 (2023). https://doi.org/10.1140/epjs/s11734-023-00815-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00815-7

Navigation