Skip to main content
Log in

Diamonds in Klein geometry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recently, there has been a suggestion that the Unruh effect might manifest in metamaterials at accessible Unruh temperatures. In certain instances, the class of metamaterials that could be instrumental for this observation exhibits a Klein signature instead of a Minkowski one. Consequently, confirming this effect in those materials necessitates a more meticulous analysis. In this paper, we employ the path integral formulation of Quantum Field Theory to investigate the analogue of the Unruh effect in Kleinian geometry. We perform calculations for a scalar theory, provided we restrict the action to a convenient subspace of the Kleinian spacetime. As a result, we determine the diamond temperature for a static observer with a finite lifetime. The outcome suggests that metamaterials could serve as a potential system for observing diamond regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript

References

  1. Y. Nambu, Axial vector current conservation in weak interactions. Phys. Rev. Lett. 4, 380–382 (1960)

    Article  ADS  Google Scholar 

  2. P.W. Anderson, Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  ADS  Google Scholar 

  4. F. Wilczek, Particle physics and condensed matter: the saga continues. Phys. Scripta T 168, 014003 (2016)

    Article  ADS  Google Scholar 

  5. I.I. Smolyaninov, Enhancement of Unruh effect near hyperbolic metamaterials. EPL 133(1), 18001 (2021)

    Article  ADS  Google Scholar 

  6. I.I. Smolyaninov, Giant unruh effect in hyperbolic metamaterial waveguides. Opt. Lett. 44, 2224–2227 (2019)

    Article  ADS  Google Scholar 

  7. I.I. Smolyaninov, Unruh effect in a waveguide. Phys. Lett. 372(37), 5861–5864 (2008)

    Article  MATH  Google Scholar 

  8. W.G. Unruh, Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  9. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, The Unruh effect and its applications. Rev. Mod. Phys. 80, 787–838 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. Martin-Martinez, I. Fuentes, R.B. Mann, Using Berry’s phase to detect the Unruh effect at lower accelerations. Phys. Rev. Lett. 107, 131301 (2011)

    Article  ADS  Google Scholar 

  11. E. Martín-Martínez, A. Dragan, R.B. Mann, I. Fuentes, Berry phase quantum thermometer. New J. Phys. 15, 053036 (2013)

    Article  ADS  MATH  Google Scholar 

  12. G. Cozzella, A.G.S. Landulfo, G.E.A. Matsas, D.A.T. Vanzella, Proposal for observing the Unruh effect using classical electrodynamics. Phys. Rev. Lett. 118, 161102 (2017)

    Article  ADS  Google Scholar 

  13. M.H. Lynch, E. Cohen, Y. Hadad, I. Kaminer, Experimental observation of acceleration-induced thermality. Phys. Rev. D 104, 025015 (2021)

    Article  ADS  Google Scholar 

  14. I.I. Smolyaninov, E.E. Narimanov, Metric signature transitions in optical metamaterials. Phys. Rev. Lett. 105, 067402 (2010)

    Article  ADS  Google Scholar 

  15. L. Alty, Kleinian signature change. Class. Quantum Gravity 11, 2523 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S. Fumeron, B. Berche, F. Santos, E. Pereira, F. Moraes, Optics near a hyperbolic defect. Phys. Rev. A 92, 063806 (2015)

    Article  ADS  Google Scholar 

  17. D. Figueiredo, F.A. Gomes, S. Fumeron, B. Berche, F. Moraes, Modeling kleinian cosmology with electronic metamaterials. Phys. Rev. D 94, 044039 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. F.A.P. Alves-Júnior, A.B. Barreto, F. Moraes, Implications of Kleinian relativity. Phys. Rev. D 103, 044023 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  19. R.M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics (University of Chicago press, Chicago, 1994)

    MATH  Google Scholar 

  20. R.M. Wald, General relativity (University of Chicago press, Chicago, 2010)

    MATH  Google Scholar 

  21. M. Tegmark, On the dimensionality of space-time. Class. Quant. Grav. 14, L69–L75 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P. Martinetti, C. Rovelli, Diamonds’s temperature: Unruh effect for bounded trajectories and thermal time hypothesis. Class. Quant. Grav. 20, 4919–4932 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Chakraborty, H. Camblong, C. Ordonez, Thermal effect in a causal diamond: open quantum systems approach. Phys. Rev. D 106(4), 045027 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Ge, C. Sheng, S. Zhu, H. Liu, Observation of the acceleration of light in a tapered optical fiber. Opt. Express 29, 27212–27218 (2021)

    Article  ADS  Google Scholar 

  25. W.G. Unruh, N. Weiss, Acceleration radiation in interacting field theories. Phys. Rev. D 29, 1656 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Atanasov, A. Ball, W. Melton, A.M. Raclariu, A. Strominger, (2, 2) Scattering and the celestial torus. JHEP 07, 083 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. T.J. Cui, D.R. Smith, R. Liu, Metamaterials (Springer, Berlin, 2010)

    Book  Google Scholar 

  28. I.I. Smolyaninov, V.N. Smolyaninova, Hyperbolic metamaterials: novel physics and applications. Solid-State Electron. 136, 102–112 (2017)

    Article  ADS  Google Scholar 

  29. X. Zhang, Y. Wu, Effective medium theory for anisotropic metamaterials. Sci. Rep. 5, 7892 (2015)

    Article  ADS  Google Scholar 

  30. C.R. Garcia, J. Correa, D. Espalin, J.H. Barton, R.C. Rumpf, R. Wicker, V. Gonzalez, 3D printing of anisotropic metamaterials. Progr. Electromag. Res. Lett. 34, 75–82 (2012)

    Article  Google Scholar 

  31. J. Fan, L. Zhang, S. Wei, Z. Zhang, S.K. Choi, B. Song, Y. Shi, A review of additive manufacturing of metamaterials and developing trends. Mater. Today 50(9), 303–328 (2021)

    Article  Google Scholar 

  32. U. Leonhardt, T.G. Philbin, General relativity in electrical engineering. New J. Phys. 8, 247 (2006)

    Article  ADS  Google Scholar 

  33. I.I. Smolyaninov, V.N. Smolyaninova, Analogue quantum gravity in hyperbolic metamaterials. Universe 8(4), 242 (2022)

    Article  ADS  Google Scholar 

  34. I.I. Smolyaninov, Y.J. Hung, E. Hwang, Experimental modeling of cosmological inflation with metamaterials. Phys. Lett. A 376, 2575–2579 (2012)

    Article  ADS  Google Scholar 

  35. S.A. Biehs, S. Lang, A.Y. Petrov, M. Eich, P. Ben-Abdallah, Blackbody theory for hyperbolic materials. Phys. Rev. Lett. 115, 174301 (2015)

    Article  ADS  Google Scholar 

  36. M. Kadic, G.W. Milton, M. van Hecke et al., 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Brazilian agencies CNPq and FAPEMIG. C. Filgueiras and L.C.T.Brito acknowledges FAPEMIG Grant No. APQ 02226/22. C. Filgueiras acknowledges CNPq Grant No. 310723/2021-3. R. M. Santos acknowledges FAPEMIG Grant No. 13681/2021-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleverson Filgueiras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, R.M., Brito, L.C.T. & Filgueiras, C. Diamonds in Klein geometry. Eur. Phys. J. Plus 138, 1079 (2023). https://doi.org/10.1140/epjp/s13360-023-04731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04731-6

Navigation