Skip to main content

Advertisement

Log in

Energy–momentum squared gravity and late-time Universe

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recently, the new modified gravity was introduced in which Einstein’s general relativity is developed by adding energy–momentum squared term \({T}_{\mu \nu }{T}^{\mu \nu }\) by coupling constant \(\alpha \). As result, the relevant field equations are different from usual field equations in Einstein’s general relativity only in the presence of matter sources. Analytical consideration proved that for the non-interaction case, the energy–momentum squared term is not strong and only can describe the non-singular big-bang theory. In this study, this theory is applied to the homogenous and isotropic space–time in the presence of the cosmological constant \(\Lambda \). In this context, we face with three plausible models of dark energy. In the first model, dark energy is presented by cosmological constant, only, and thus, extra terms arise from squared term effects on matter evolution. This case gives no new model of dark energy. As shown in Roshan and Shojai (Phys Rev D 94:044002, 2016), considering the cosmological constant as part of the matter field is not equal to the first scenario in which the cosmological constant plays a geometrical role. Therefore, for the second case, the cosmological constant is investigated as the part of the matter action, and we can assume that dark energy includes two parts, the cosmological constant and the energy–momentum squared term. Modeling this scenario illustrates this theory gives no valuable dark energy for \(\alpha \ne 0\). It reveals the second scenario wherein cosmological constant behaves such as part of matter field gives accelerated expansion Universe only in the absence of energy–momentum squared term. In the last plausible scenario, we may assume dark energy constructed with both parts, geometrical part includes cosmological constant and matter effects arise from the energy–momentum squared term. We have shown that only the last model satisfies observations and presents the quintessence dark energy in which cosmological constant problems are solved. Moreover, it is shown that this model coincides with \(\Lambda \)CDM theory with some small errors in studying theoretical CMB temperature and linear matter power spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

There are no data associated in the manuscript.

References

  1. E. Poisson, C.M. Will, Gravity: Newtonian, Post-Newtonian, Relativistic (Cambridge University Press, Cambridge, 2014)

    Book  MATH  Google Scholar 

  2. A.G. Riess, Nat. Rev. Phys 2, 10–12 (2020)

    Article  Google Scholar 

  3. R. Allahverdi et al., Open J. Astrophys. 4, 133 (2021)

    Article  Google Scholar 

  4. B. Ratra, M.S. Vogeley, Pub. Astron. Soc. Pac. 120, 235 (2008)

    Article  ADS  Google Scholar 

  5. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  6. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  7. P. de Bernardis et al., Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  8. S. Perlmutter et al., Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  9. M. Natsuume, arXiv:gr-qc/0108059

  10. A.V. Frolov, Phys. Rev. Lett. 101, 061103 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Belinski, AIP Conf. Proc. 1205, 17 (2010)

    Article  ADS  Google Scholar 

  12. T. Clifton et al., Phys. Reports 513, 1–189 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. G. ’t Hooft, M.J.G. Veltman, Ann. Poincaré Phys. Theor. A 20, 69 (1974)

    ADS  Google Scholar 

  14. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559–606 (2003)

    Article  ADS  Google Scholar 

  15. T. Padmanabham, Phys. Rep. 380, 235 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)

    Article  ADS  Google Scholar 

  17. K. Bamba et al., Astrophy. Space Sci. 342, 155–228 (2012)

    Article  ADS  Google Scholar 

  18. M.J. Mortonson et al., arXiv:1401.0046

  19. A. Joyce et al., Ann. Rev. Nuc. Part. Sci. 66, 95–122 (2016)

    Article  ADS  Google Scholar 

  20. A.S. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1924)

    MATH  Google Scholar 

  21. C.H. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  22. F.W. Hehl et al., Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  Google Scholar 

  23. A. De Felice, S. Tsujikawa, Living Rev. Rel. 13, 3 (2010)

    Article  Google Scholar 

  24. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451–497 (2010)

    Article  ADS  Google Scholar 

  25. T. Harko et al., Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  26. E.H. Baffou et al., arXiv:1706.08842

  27. R. Myrzakulov, Euro. Phys. J. C 72(N11), 2203 (2012)

    Article  ADS  Google Scholar 

  28. E.N. Saridakis et al., Phys. Rev. D 102, 023525 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Wang et al., Phys. Reports 696, 1–57 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Malekjani et al., MNRAS 464, 1192 (2017)

    Article  ADS  Google Scholar 

  31. M. Tavayef et al., Phys. Lett. B 781, 195–200 (2018)

    Article  ADS  Google Scholar 

  32. H.R. Fazlollahi, Phys. Dark Univ. 28, 100523 (2020)

    Article  Google Scholar 

  33. M. Roshan, F. Shojai, Phys. Rev. D 94, 044002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. C.V.R. Board, J.D. Barrow, Phys. Rev. D 96, 123517 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Khodadi et al., Phys. Dark Univ. 36, 101013 (2022)

    Article  Google Scholar 

  36. Bo. Wang et al., ApJ 898, 100 (2020)

    Article  ADS  Google Scholar 

  37. N. Aghanim et al., A&A 641, A6 (2020)

    Article  ADS  Google Scholar 

  38. Z.H. Zhu, M.K. Fujimoto, X.T. He, Astrophys. J. 603, 365 (2004)

    Article  ADS  Google Scholar 

  39. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

    Google Scholar 

  40. W. Rindler, Relativity: Special, General, and Cosmological, 2nd edn. (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  41. Y. Wang et al., Phys. Rev. D 85, 023517 (2012)

    Article  ADS  Google Scholar 

  42. C.L. Bennett et al., arXiv:1212.5225

  43. G. Hinshaw et al., arXiv:1212.522

  44. A. Lewis, A. Challinor, http://camb.info

Download references

Acknowledgements

The author thanks V. D. Ivashchuk and A. H. Fazlollahi for their helpful cooperation and comments. We also thank dear reviewer for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Fazlollahi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 258 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazlollahi, H.R. Energy–momentum squared gravity and late-time Universe. Eur. Phys. J. Plus 138, 211 (2023). https://doi.org/10.1140/epjp/s13360-023-03723-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03723-w

Navigation