Skip to main content
Log in

Model-independent study on the anomalous \(ZZ\gamma \) and \(Z\gamma \gamma \) couplings at the future muon collider

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we investigate the potential of \(\mu ^{-} \mu ^{+}\rightarrow Z\gamma \rightarrow \nu \bar{\nu }\gamma \) process at the future muon collider with a center-of-mass energy of 3 TeV to examine the anomalous ZZ\(\gamma \) and \(Z\gamma \gamma \) neutral triple gauge couplings defining CP-conserving \(C_{\widetilde{B}W}/{\Lambda ^4}\) coupling and three CP-violating \(C_{\mathrm{BB}}/{\Lambda ^4}\), \(C_{\mathrm{BW}}/{\Lambda ^4}\), \(C_{\mathrm{WW}}/{\Lambda ^4}\) couplings. All signal and relevant background events are generated in MadGraph and passed through Pythia for parton showering and hadronization. Detector effects are also considered via tuned muon detector cards in Delphes. The effects of systematic uncertainties of \(0\%\), \(3\%\) and \(5\%\) on the sensitivities are studied. The best sensitivities obtained from the process \(\mu ^{-} \mu ^{+}\rightarrow Z\gamma \rightarrow \nu \bar{\nu }\gamma \) are \([-6.53;6.64]\times 10^{-2}\) TeV\(^{-4}\) on CP-conserving \(C_{\widetilde{B}W}/{\Lambda ^4}\) coupling and \([-2.47;2.47]\times 10^{-2}\) TeV\(^{-4}\), \([-8.46;8.46]\times 10^{-2}\) TeV\(^{-4}\) and \([-2.20;2.20]\times 10^{-1}\) TeV\(^{-4}\) on CP-conserving \(C_{\mathrm{BB}}/{\Lambda ^4}\), \(C_{\mathrm{BW}}/{\Lambda ^4}\), \(C_{\mathrm{WW}}/{\Lambda ^4}\) couplings , respectively. Our obtained results on the anomalous neutral gauge couplings set more stringent sensitivity, ranging between 5 and 15 times than the current experimental results while slightly better than the phenomenological studies at future pp colliders such as the HL-LHC, the HE-LHC and the FCC-hh, respectively. On the other hand, we can see that the bounds on the anomalous neutral gauge couplings expected to be obtained for the future \(e^{-}e^{+}\) colliders such as the CLIC are roughly 2 times better than our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. U. Baur, D. Rainwater, Phys. Rev. D 62, 113011 (2000). [arXiv:hep-ph/0008063]

    Article  ADS  Google Scholar 

  2. D. Choudhury, S.D. Rindani, Phys. Lett. B 335, 198–204 (1994). [arXiv:hep-ph/9405242]

    Article  ADS  Google Scholar 

  3. S. Atağ, İ Şahin, Phys. Rev. D 70, 053014 (2004). [arXiv:hep-ph/0408163]

    Article  ADS  Google Scholar 

  4. I. Ots, H. Uibo, H. Liivat, R.K. Loide, R. Saar, Nucl. Phys. B 702, 346–356 (2004)

    Article  ADS  Google Scholar 

  5. I. Ots, H. Uibo, H. Liivat, R.K. Loide, R. Saar, Nucl. Phys. B 740, 212–221 (2006)

    Article  ADS  Google Scholar 

  6. A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, M.A. Pérez, Phys. Rev. D 80, 017301 (2009). [arXiv:0808.0945 [hep-ph]]

    Article  ADS  Google Scholar 

  7. B. Ananthanarayan, S.K. Garg, M. Patra, S.D. Rindani, Phys. Rev. D 85, 034006 (2012). [arXiv:1104.3645 [hep-ph]]

    Article  ADS  Google Scholar 

  8. B. Ananthanarayan, J. Lahiri, M. Patra, S.D. Rindani, JHEP 08, 124 (2014). [arXiv:1404.4845 [hep-ph]]

    Article  ADS  Google Scholar 

  9. R. Rahaman, R.K. Singh, Eur. Phys. J. C 76, 539 (2016). [arXiv:1604.06677 [hep-ph]]

    Article  ADS  Google Scholar 

  10. R. Rahaman, R.K. Singh, Eur. Phys. J. C 77, 521 (2017). [arXiv:1703.06437 [hep-ph]]

    Article  ADS  Google Scholar 

  11. J. Ellis, S.F. Ge, H.J. He, R.Q. Xiao, Chin. Phys. C 44, 063106 (2020). [arXiv:1902.06631 [hep-ph]]

    Article  ADS  Google Scholar 

  12. Q. Fu, J.C. Yang, C.X. Yue, Y.C. Guo, Nucl. Phys. B 972, 115543 (2021). [arXiv:2102.03623 [hep-ph]]

    Article  Google Scholar 

  13. J. Ellis, H.J. He, R.Q. Xiao, Sci. China Phys. Mech. Astron. 64, 221062 (2021). [arXiv:2008.04298 [hep-ph]]

    Article  ADS  Google Scholar 

  14. J.C. Yang, Y.C. Guo, L.H. Cai, Nucl. Phys. B 977, 115735 (2022). [arXiv:2111.10543 [hep-ph]]

    Article  Google Scholar 

  15. S. Spor, E. Gurkanli, M. Köksal, Nucl. Phys. B 979, 115785 (2022). [arXiv:2203.02352 [hep-ph]]

    Article  Google Scholar 

  16. U. Baur, E.L. Berger, Phys. Rev. D 47, 4889 (1993)

    Article  ADS  Google Scholar 

  17. A. Senol, H. Denizli, A. Yilmaz, I.T. Cakir, K.Y. Oyulmaz, O. Karadeniz, O. Cakir, Nucl. Phys. B 935, 365–376 (2018). [arXiv:1805.03475 [hep-ph]]

    Article  ADS  Google Scholar 

  18. R. Rahaman, R.K. Singh, Nucl. Phys. B 948, 114754 (2019). [arXiv:1810.11657 [hep-ph]]

    Article  Google Scholar 

  19. A. Senol, H. Denizli, A. Yilmaz, I.T. Cakir, O. Cakir, Acta Phys. Pol. B 50, 1597 (2019). [arXiv:1906.04589 [hep-ph]]

    Article  ADS  Google Scholar 

  20. A. Senol, H. Denizli, A. Yilmaz, I.T. Cakir, O. Cakir, Phys. Lett. B 802, 135255 (2020). [arXiv:1910.03843 [hep-ph]]

    Article  Google Scholar 

  21. A. Yilmaz, A. Senol, H. Denizli, I.T. Cakir, O. Cakir, Eur. Phys. J. C 80, 173 (2020). [arXiv:1906.03911 [hep-ph]]

    Article  ADS  Google Scholar 

  22. A. Yilmaz, Nucl. Phys. B 969, 115471 (2021). [arXiv:2102.01989 [hep-ph]]

    Article  Google Scholar 

  23. A.I. Hernández-Juárez, A. Moyotl, G. Tavares-Velasco, Eur. Phys. J. C 81, 304 (2021). [arXiv:2102.02197 [hep-ph]]

    Article  ADS  Google Scholar 

  24. A. Biekötter, P. Gregg, F. Krauss, M. Schönherr, Phys. Lett. B 817, 136311 (2021). [arXiv:2102.01115 [hep-ph]]

    Article  Google Scholar 

  25. D. Lombardi, M. Wiesemann, G. Zanderighi, Phys. Lett. B 824, 136846 (2022)

    Article  Google Scholar 

  26. A. I. Hernández-Juárez and G. Tavares-Velasco, [arXiv:2203.16819 [hep-ph]]

  27. C. Geng et al. [ATLAS Collaboration], PoS DIS2019, 286 (2019)

  28. G.J. Gounaris, J. Layssac, F.M. Renard, Phys. Rev. D 67, 013012 (2003). [arXiv:hep-ph/0211327]

    Article  ADS  Google Scholar 

  29. A. Belloni, A. Freitas, J. Tian, J. Alcaraz Maestre, A. Apyan, B. Azartash-Namin, P. Azzurri, S. Banerjee, J. Beyer and S. Bhattacharya, et al. [arXiv:2209.08078 [hep-ph]]

  30. R.D. Ryne, Nature 578, 44–45 (2020)

    Article  ADS  Google Scholar 

  31. K.R. Long, D. Lucchesi, M.A. Palmer, N. Pastrone, D. Schulte, V. Shiltsev, Nat. Phys. 17, 289–292 (2021)

    Article  Google Scholar 

  32. J. P. Delahaye, M. Diemoz, K. Long, B. Mansoulié, N. Pastrone, L. Rivkin, D. Schulte, A. Skrinsky and A. Wulzer, “Muon Colliders,” (2019) [arXiv:1901.06150 [physics.acc-ph]]

  33. J. D. Blas et al. [Muon Collider Collaboration], “The physics case of a 3 TeV muon collider stage,” (2022) [arXiv:2203.07261 [hep-ph]]

  34. R.B. Palmer, Rev. Accel. Sci. Tech. 7, 137–159 (2014)

    Article  Google Scholar 

  35. M. Antonelli, M. Boscolo, R.D. Nardo, P. Raimondi, Nucl. Instrum. Meth. A 807, 101–107 (2016)

    Article  ADS  Google Scholar 

  36. M.-H. Wang, Y. Nosochkov, Y. Cai, M. Palmer, JINST 11, P09003 (2016)

    Article  Google Scholar 

  37. D. Neuffer, V. Shiltsev, JINST 13, T10003 (2018). [arXiv:1811.10694 [physics.acc-ph]]

    Article  ADS  Google Scholar 

  38. M. Boscolo, J.-P. Delahaye, M. Palmer, Rev. Accel. Sci. Tech. 10, 189–214 (2019). arXiv:1808.01858 [physics.acc-ph]

    Article  Google Scholar 

  39. B. Bogomilov et al., MICE Collaboration. Nature 578, 53–59 (2020) [arXiv:1907.08562 [physics.acc-ph]]

  40. D. Buttazzo, D. Redigolo, F. Sala, A. Tesi, JHEP 11, 144 (2018). [arXiv:1807.04743 [hep-ph]]

    Article  ADS  Google Scholar 

  41. M. Köksal, A.A. Billur, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, Int. J. Mod. Phys. A 34, 1950076 (2019). [arXiv:1811.01188 [hep-ph]]

    Article  ADS  Google Scholar 

  42. A. Costantini, F.D. Lillo, F. Maltoni, L. Mantani, O. Mattelaer, R. Ruiz, X. Zhao, JHEP 09, 80 (2020). [arXiv:2005.10289 [hep-ph]]

    Article  ADS  Google Scholar 

  43. W. Yin and M. Yamaguchi, “Muon \(g-2\) at multi-TeV muon collider,” (2020) [arXiv:2012.03928 [hep-ph]]

  44. M. Ruhdorfer, E. Salvioni, A. Weiler, SciPost Phys. 8, 027 (2020). [arXiv:1910.04170 [hep-ph]]

    Article  Google Scholar 

  45. M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini, X. Zhao, JHEP 09, 98 (2020). [arXiv:2003.13628 [hep-ph]]

    Article  ADS  Google Scholar 

  46. P. Bandyopadhyay, A. Costantini, Phys. Rev. D 103, 015025 (2021). [arXiv:2010.02597 [hep-ph]]

    Article  ADS  Google Scholar 

  47. T. Han, S. Li, S. Su, W. Su, Y. Wu, Phys. Rev. D 104, 055029 (2021). [arXiv:2102.08386 [hep-ph]]

    Article  ADS  Google Scholar 

  48. W. Liu, K.-P. Xie, JHEP 04, 15 (2021). [arXiv:2101.10469 [hep-ph]]

    Article  ADS  Google Scholar 

  49. T. Han, Z. Liu, L.-T. Wang, X. Wang, Phys. Rev. D 103, 075004 (2021). [arXiv:2009.11287 [hep-ph]]

    Article  ADS  Google Scholar 

  50. R. Capdevilla, F. Meloni, R. Simoniello, J. Zurita, JHEP 06, 133 (2021). [arXiv:2102.11292 [hep-ph]]

    Article  ADS  Google Scholar 

  51. S. Bottaro, A. Strumia, N. Vignaroli, JHEP 06, 143 (2021). [arXiv:2103.12766 [hep-ph]]

    Article  ADS  Google Scholar 

  52. R. Capdevilla, D. Curtin, Y. Kahn, G. Krnjaic, Phys. Rev. D 103, 075028 (2021). [arXiv:2006.16277 [hep-ph]]

    Article  ADS  Google Scholar 

  53. G.-Y. Huang, F.S. Queiroz, W. Rodejohann, Phys. Rev. D 103, 095005 (2021). [arXiv:2101.04956 [hep-ph]]

    Article  ADS  Google Scholar 

  54. P. Asadi, R. Capdevilla, C. Cesarotti, S. Homiller, JHEP 10, 182 (2021). [arXiv:2104.05720 [hep-ph]]

    Article  ADS  Google Scholar 

  55. T. Han, D. Liu, I. Low, X. Wang, Phys. Rev. D 103, 013002 (2021). [arXiv:2008.12204 [hep-ph]]

    Article  ADS  Google Scholar 

  56. R. Franceschini, M. Greco, Symmetry 13, 851 (2021). [arXiv:2104.05770 [hep-ph]]

    Article  ADS  Google Scholar 

  57. M. Chiesa, B. Mele and F. Piccinini, “Multi Higgs production via photon fusion at future multi-TeV muon colliders,” (2021) [arXiv:2109.10109 [hep-ph]]

  58. D. Buttazzo, P. Paradisi, Phys. Rev. D 104, 075021 (2021). [arXiv:2012.02769 [hep-ph]]

    Article  ADS  Google Scholar 

  59. G.-Y. Huang, S. Jana, F.S. Queiroz, W. Rodejohann, Phys. Rev. D 105, 015013 (2022). [arXiv:2103.01617 [hep-ph]]

    Article  ADS  Google Scholar 

  60. S. Spor and M. Köksal, “Investigation of anomalous triple gauge couplings in \(\mu \gamma \) collision at multi-TeV muon colliders,” (2022) [arXiv:2201.00787 [hep-ph]]

  61. J-C. Yang, X-Y. Han, Z-B. Qin, T. Li and Y-C. Guo, “Measuring the anomalous quartic gauge couplings in the \(W^+W^- \rightarrow W^+W^-\) process at muon collider using artificial neural networks,” (2022) [arXiv:2204.10034 [hep-ph]]

  62. M. Forslund and P. Meade, “High precision higgs from high energy muon colliders,” (2022) [arXiv:2203.09425 [hep-ph]]

  63. C. Degrande, JHEP 02, 101 (2014). [arXiv:1308.6323 [hep-ph]]

    Article  ADS  Google Scholar 

  64. G.J. Gounaris, J. Layssac, F.M. Renard, Phys. Rev. D 61, 073013 (2000). [arXiv:hep-ph/9910395]

    Article  ADS  Google Scholar 

  65. R. Rahaman, Indian Institute of Science Education and Researh, PhD thesis (2020) [arXiv:2007.07649 [hep-ph]]

  66. M. Aaboud et al., ATLAS Collaboration. JHEP 12, 010 (2018). [arXiv:1810.04995 [hep-ex]]

    ADS  Google Scholar 

  67. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, JHEP 07, 079 (2014). [arXiv:1405.0301 [hep-ph]]

    Article  ADS  Google Scholar 

  68. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, Comput. Phys. Commun. 191, 159–177 (2015). [arXiv:1410.3012 [hep-ph]]

    Article  ADS  Google Scholar 

  69. J.D. Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, M. Selvaggi, JHEP 02, 057 (2014). [arXiv:1307.6346 [hep-ex]]

    Article  Google Scholar 

  70. https://github.com/delphes/delphes/blob/master/cards/delphes_card_MuonColliderDet.tcl

  71. http://madgraph.physics.illinois.edu/Downloads/ExRootAnalysis/

  72. R. Brun, F. Rademakers, Nucl. Instrum. Meth. A 389, 81–86 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Köksal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senol, A., Spor, S., Gurkanli, E. et al. Model-independent study on the anomalous \(ZZ\gamma \) and \(Z\gamma \gamma \) couplings at the future muon collider. Eur. Phys. J. Plus 137, 1354 (2022). https://doi.org/10.1140/epjp/s13360-022-03569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03569-8

Navigation