Skip to main content
Log in

A numerical study on the hybrid nanofluid flow between a permeable rotating system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this comparative research article, the hybrid nanofluid flow between rotating rectangular systems is thoroughly analyzed in the incidence of the magnetic and radiative effects. The upper-level sheet is solid and fixed, while the lower-level sheet is permeable and stretchable. Two different combinations of nanoparticles, i.e., \({\text{Cu}}/{\text{Ag}}\) and \({\text{CuO}}/{\text{TiO}}_{2}\), with water are considered for preparing a hybrid nanofluid. The arising nonlinear equations are transformed into ordinary differential equations using similarity transformation. The important impacts of different study parameters are analyzed using the boundary value problem technique at MATLAB. The solution convergence is set to be \({10}^{-6}\). The outcomes are presented through graphs and tables. Thermophoresis decreases the temperature transfer rate, while it enhances the mass transmission rate and radiation improves the Nusselt and decreases the Sherwood number for both hybrid nanofluids. A higher-temperature transmission rate hybrid nanofluid can be obtained by an appropriate combination of base fluid and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

All data relevant to the study are included in the manuscript.

Abbreviations

\(K_{{\text{r}}}\) :

Rotation parameter

\(C_{p}\) :

Specific heat

\(M\) :

Magnetic parameter

\(D_{{\text{B}}} ,D_{{\text{T}}}\) :

Brownian motion and Thermophoresis diffusion

\(\eta\) :

Similarity variable

\(T,C\) :

Temperature and Concentration

\(\widetilde{{{\text{Cf}}}}, {\text{Cf}}\) :

Skin frictions

\(a\) :

Stretching rate

\({\text{Pr}},{\text{Ec}}\) :

Prandtl and Eckert number

\({\text{Rd}}\) :

Thermal Radiation parameter

\(q_{w} , q_{m}\) :

Heat and Mass flux

R:

Reynolds number

MHD:

Magnetohydrodynamic

\(p^{*}\) :

Modified fluid pressure

\(k\) :

Thermal conductivity

\(B_{0}\) :

Uniform Magnetic field

\({\text{Nu}}_{x} , {\text{Sh}}_{x}\) :

Nusselt and Sherwood number coefficient

\({\text{D}}_{1} , {\text{D}}_{2} ,{\text{D}}_{3} , {\text{D}}_{4}\) :

Constants

Z :

Porosity parameter

\(u,v,w\) :

Velocity components in \(x,y,z\) directions

\(f,g\) :

Dimensionless velocity

\(h\) :

Distance between plates

\(N_{{\text{b}}} ,N_{{\text{t}}}\) :

Brownian diffusion and Thermophoresis parameter

\(v_{f}\) :

Kinematic viscosity

\(\mu_{f}\) :

Dynamic viscosity

3D:

Three-dimensional

\(\alpha\) :

Temperature diffusivity

\({\Omega }\) :

Rotational velocity

\(\rho\) :

Density

\(\theta ,\phi\) :

Temperature and concentration profile

\(\tau_{w}\) :

Shear stress

\(\sigma\) :

Electrical conductivity

References

  1. L.J. Crane, Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP 21(4), 645–647 (1970)

    Article  ADS  Google Scholar 

  2. B.K. Dutta, P. Roy, A.S. Gupta, Temperature field in flow over a stretching sheet with uniform heat flux. Int. Commun. Heat Mass Transfer 12(1), 89–94 (1985)

    Article  Google Scholar 

  3. A. Hussain, M.A. Elkotb, M. Arshad, A. Rehman, K. Sooppy Nisar, A. Hassan, C.A. Saleel, Computational investigation of the combined impact of nonlinear radiation and magnetic field on three-dimensional rotational nanofluid flow across a stretchy surface. Processes 9(8), 1453 (2021)

    Article  Google Scholar 

  4. M. Turkyilmazoglu, Wall stretching in magnetohydrodynamics rotating flows in inertial and rotating frames. J. Thermophys. Heat Transfer 25(4), 606–613 (2011)

    Article  Google Scholar 

  5. S. Nadeem, C. Lee, Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. 7(1), 1–6 (2012)

    Article  Google Scholar 

  6. M. Turkyilmazoglu, Radially expanding/contracting and rotating sphere with suction. Int. J. Numer. Methods Heat Fluid Flow (2022). https://doi.org/10.1108/HFF-01-2022-0011

    Article  Google Scholar 

  7. K.V. Wong, O. De Leon, Applications of nanofluids: current and future. Adv. Mech. Eng. 2, 519659 (2010)

    Article  Google Scholar 

  8. S. Nadeem, R.U. Haq, Z.H. Khan, Numerical solution of non-Newtonian nanofluid flow over a stretching sheet. Appl. Nanosci. 4(5), 625–631 (2014)

    Article  ADS  Google Scholar 

  9. S.E. Ghasemi, S. Mohsenian, S. Gouran, A. Zolfagharian, A novel spectral relaxation approach for nanofluid flow past a stretching surface in presence of magnetic field and nonlinear radiation. Results Phys. 32, 105141 (2022)

    Article  Google Scholar 

  10. R. Ellahi, The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl. Math. Model. 37(3), 1451–1467 (2013)

    Article  MathSciNet  Google Scholar 

  11. M. Sheikholeslami, D.D. Ganji, Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol. 235, 873–879 (2013)

    Article  Google Scholar 

  12. N.S. Anuar, N. Bachok, M. Turkyilmazoglu, N.M. Arifin, H. Rosali, Analytical and stability analysis of MHD flow past a nonlinearly deforming vertical surface in Carbon Nanotubes. Alex. Eng. J. 59(1), 497–507 (2020)

    Article  Google Scholar 

  13. A. Hussain, M. Arshad, A. Rehman, A. Hassan, S.K. Elagan, H. Ahmad, A. Ishan, Three-dimensional water-based magneto-hydrodynamic rotating nanofluid flow over a linear extending sheet and heat transport analysis: a numerical approach. Energies 14(16), 5133 (2021)

    Article  Google Scholar 

  14. T. Hayat, M. Qasim, S. Mesloub, MHD flow and heat transfer over permeable stretching sheet with slip conditions. Int. J. Numer. Meth. Fluids 66(8), 963–975 (2011)

    Article  MathSciNet  Google Scholar 

  15. P.S. Reddy, A.J. Chamkha, Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids. Alex. Eng. J. 55(1), 331–341 (2016)

    Article  Google Scholar 

  16. M. Arshad, A. Hussain, A. Hassan, S.A.G.A. Shah, M.A. Elkotb, S. Gouadria, M. Alsehli, A.M. Galal, Heat and mass transfer analysis above an unsteady infinite porous surface with chemical reaction. Case Stud. Thermal Eng. 36, 102140 (2022)

    Article  Google Scholar 

  17. R. Kandasamy, R. Dharmalingam, K.S. Prabhu, Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate. Alex. Eng. J. 57(1), 121–130 (2018)

    Article  Google Scholar 

  18. A.A. Siddiqui, M. Turkyilmazoglu, Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int. Commun. Heat Mass Transfer 113, 104499 (2020)

    Article  Google Scholar 

  19. P.S. Reddy, P. Sreedevi, A.J. Chamkha, MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction. Powder Technol. 307, 46–55 (2017)

    Article  Google Scholar 

  20. Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching surface. Int. J. Numer. Meth. Fluids 59(4), 443–458 (2009)

    Article  MathSciNet  Google Scholar 

  21. A. Hassan, A. Hussain, M. Arshad, M.M. Alanazi, H.Y. Zahran, Numerical and thermal investigation of magneto-hydrodynamic hybrid nanoparticles (SWCNT-Ag) under rosseland radiation: a prescribed wall temperature case. Nanomaterials 12(6), 891 (2022)

    Article  Google Scholar 

  22. O. Makinde, F. Mabood, M. Ibrahim, Chemically reacting on MHD boundary-layer flow of nanofluids over a non-linear stretching sheet with heat source/sink and thermal radiation. Thermal Sci. 22(1 Part B), 495–506 (2018). https://doi.org/10.2298/TSCI151003284M

    Article  Google Scholar 

  23. S.M. Ibrahim, P.V. Kumar, G. Lorenzini, E. Lorenzini, F. Mabood, Numerical study of the onset of chemical reaction and heat source on dissipative MHD stagnation point flow of Casson nanofluid over a nonlinear stretching sheet with velocity slip and convective boundary conditions. J. Eng. Thermophys. 26(2), 256–271 (2017)

    Article  Google Scholar 

  24. M. Arshad, A. Hussain, A. Hassan, I. Khan, M. Badran, S. Mehrez, A. Elfasakhany, T. Abdeljawad, A.M. Galal, Heat transfer analysis of nanostructured material flow over an exponentially stretching surface: a comparative study. Nanomaterials 12(7), 1204 (2022). https://doi.org/10.3390/nano12071204

    Article  Google Scholar 

  25. A. Hassan, A. Hussain, M. Arshad, J. Awrejcewicz, W. Pawlowski, F.M. Alharbi, H. Karamti, Heat and mass transport analysis of MHD rotating hybrid nanofluids conveying silver and molybdenum di-sulfide nano-particles under effect of linear and non-linear radiation. Energies 15(17), 6269 (2022)

    Article  Google Scholar 

  26. M. Arshad, A. Hussain, A. Elfasakhany, S. Gouadria, J. Awrejcewicz, W. Pawłowski, M.A. Elkotb, F.M. Alharbi, Magneto-hydrodynamic flow above exponentially stretchable surface with chemical reaction. Symmetry 14(8), 1688 (2022). https://doi.org/10.3390/sym14081688

    Article  ADS  Google Scholar 

  27. A. Hassan, A. Hussain, M. Arshad, S. Gouadria, J. Awrejcewicz, A.M. Galal, F.M. Alharbi, S. Eswaramoorthi, Insight into the significance of viscous dissipation and heat generation/absorption in magneto-hydrodynamic radiative casson fluid flow with first-order chemical reaction. Front. Phys. (2022). https://doi.org/10.3389/fphy.2022.920372

    Article  Google Scholar 

  28. M. Arshad, A. Hussain, S.A.G.A. Shah, P. Wróblewski, M.A. Elkotb, M.A. Abdelmohimen, A. Hassan, Thermal energy investigation of magneto-hydrodynamic nano-material liquid flow over a stretching sheet: comparison of single and composite particles. Alex. Eng. J. 61(12), 10453–10462 (2022)

    Article  Google Scholar 

  29. K. Anantha Kumar, N. Sandeep, V. Sugunamma, I.L. Animasaun, Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid. J. Therm. Anal. Calorim. 139(3), 2145–2153 (2020)

    Article  Google Scholar 

  30. I. Tlili, M.T. Mustafa, K.A. Kumar, N. Sandeep, Effect of asymmetrical heat rise/fall on the film flow of magnetohydrodynamic hybrid ferrofluid. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  31. L.A. Lund, Z. Omar, I. Khan, S. Kadry, S. Rho, I.A. Mari, K.S. Nisar, Effect of viscous dissipation in heat transfer of MHD flow of micropolar fluid partial slip conditions: dual solutions and stability analysis. Energies 12(24), 4617 (2019)

    Article  Google Scholar 

  32. G. Rasool, A. Shafiq, I. Khan, D. Baleanu, K. Sooppy Nisar, G. Shahzadi, Entropy generation and consequences of MHD in Darcy-Forchheimer nanofluid flow bounded by non-linearly stretching surface. Symmetry 12(4), 652 (2020)

    Article  ADS  Google Scholar 

  33. C.J. Tsai, J.S. Lin, S.G. Aggarwal, D.R. Chen, Thermophoretic deposition of particles in laminar and turbulent tube flows. Aerosol Sci. Technol. 38(2), 131–139 (2004)

    Article  ADS  Google Scholar 

  34. M. Arshad, A. Hussain, A. Hassan, Q. Haider, A.H. Ibrahim, M.S. Alqurashi, A.H. Almaliki, A. Abdussattar, Thermophoresis and brownian effect for chemically reacting magneto-hydrodynamic nanofluid flow across an exponentially stretching sheet. Energies 15(1), 143 (2021). https://doi.org/10.3390/en15010143

    Article  Google Scholar 

  35. R. Tsai, J.S. Huang, Heat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surface. Int. J. Heat Mass Transf. 52(9–10), 2399–2406 (2009)

    Article  Google Scholar 

  36. T. Hayat, T. Muhammad, A. Qayyum, A. Alsaedi, M. Mustafa, On squeezing flow of nanofluid in the presence of magnetic field effects. J. Mol. Liq. 213, 179–185 (2016)

    Article  Google Scholar 

  37. A. Malvandi, S. Heysiattalab, D.D. Ganji, Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. J. Mol. Liq. 216, 503–509 (2016)

    Article  Google Scholar 

  38. M. Sheikholeslami, D.D. Ganji, Numerical investigation for two phase modeling of nanofluid in a rotating system with permeable sheet. J. Mol. Liq. 194, 13–19 (2014)

    Article  Google Scholar 

  39. A. Hussain, A. Hassan, Q. Al Mdallal, H. Ahmad, A. Rehman, M. Altanji, M. Arshad, Heat transport investigation of magneto-hydrodynamics (SWCNT-MWCNT) hybrid nanofluid under the thermal radiation regime. Case Stud. Thermal Eng. 27, 101244 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Both author(s) contributed equally.

Corresponding authors

Correspondence to Mubashar Arshad or Ali Hassan.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, M., Hassan, A. A numerical study on the hybrid nanofluid flow between a permeable rotating system. Eur. Phys. J. Plus 137, 1126 (2022). https://doi.org/10.1140/epjp/s13360-022-03313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03313-2

Navigation