Skip to main content

Advertisement

Log in

Sun-synchronous orbital dust ring to reduce climate change at the polar caps

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

As a geoengineering strategy to attenuate the solar insolation and offset the impacts of global warming at the polar regions, this study proposes a Sun-pointing vertical Earth ring comprised of dust grains to shade mainly the Earth’s poles and to reduce climate change at the polar regions. A dust ring from 1.1 to 1.17 Earth radii passing above both poles of the Earth is designed, taking into account the effects of solar radiation pressure and the Earth’s \(J_2\) oblateness perturbation. Perturbations including atmospheric drag, third-body gravitational forces and shaded regions are neglected. A family of circular polar orbits, with inclinations about \(98^{\circ }\), is considered for the passive cloud of particles with radii less than 50 \(\mu \hbox {m}\). We state that the coupled effect of solar radiation pressure and \(J_2\) perturbation in the orbital dynamics of small particles is essential to ensure that the side of the dust ring will be pointing to the Sun. An analytical ring shadow model is used to evaluate its performance and to estimate the mass of the ring. The results of this study shows that the attenuation of solar isolation at the polar regions is about twice the attenuation computed in the rest of the regions of the Earth. Finally, an estimate of about \(5.5 \times 10^{12}\) kg of material is computed as the total mass required to offset the impacts of climate change at the Earth’s poles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The value is the same as the amplitude of the inclination used in Figs. 3, 4 and 5.

  2. https://www.zenithcrusher.com/en/products/xzm-ultrafine-mill.html/, Last accessed 05 Jan 2021.

References

  1. J.C. Comiso, J. Clim. (2003). https://doi.org/10.1175/1520-0442(2003)016<3498:WTITAF>2.0.CO;2

  2. T.R. Karl, K.E. Trenberth, Science (2003). https://doi.org/10.1126/science.1090228

    Article  Google Scholar 

  3. J. Blunden, D.S. Arndt, Bull. Am. Meteor. Soc. (2012). https://doi.org/10.1175/2012BAMSStateoftheClimate.1

    Article  Google Scholar 

  4. IPCC, Climate Change 2013: The Physical Science Basis (Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013). https://www.ipcc.ch/report/ar5/wg1/. Accessed 01 Nov 2020

  5. USGCRP, Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Vol. II (U.S. Global Change Research Program, 2018). https://doi.org/10.7930/NCA4.2018. Accessed 01 Nov 2020

  6. M.V. Guarino et al., Nat. Clim. Change (2020). https://doi.org/10.1038/s41558-020-0865-2

    Article  Google Scholar 

  7. L. Cheng et al., Sci. Adv. (2017). https://doi.org/10.1126/sciadv.1601545

    Article  Google Scholar 

  8. J.S. Hoffman et al., Science (2017). https://doi.org/10.1126/science.aai8464

    Article  Google Scholar 

  9. J.A. Church, N.J. White, Surv. Geophys. (2011). https://doi.org/10.1007/s10712-011-9119-1

    Article  Google Scholar 

  10. A. Dutton et al., Science (2015). https://doi.org/10.1126/science.aaa4019

    Article  Google Scholar 

  11. Human Settlements on the Coast (2020). http://www.oceansatlas.org/subtopic/en/c/114/. Accessed 01 Nov 2020

  12. D.W. Keith, Annu. Rev. Earth Planet. Sci. (2000). https://doi.org/10.1146/annurev.energy.25.1.245

    Article  Google Scholar 

  13. K. Caldeira, G. Bala, L. Cao, Annu. Rev. Earth Planet. Sci. (2013). https://doi.org/10.1146/annurev-earth-042711-105548

    Article  Google Scholar 

  14. ACIA, Impacts of a Warming Arctic: Arctic Climate Impact Assessment (ACIA Overview report, 2004). www.amap.no/documents/doc/impacts-of-a-warming-arctic-2004/786. Accessed 01 Nov 2020

  15. J.T. Early, J. Br. Interplanet. Soc. 42, 567 (1989)

    ADS  Google Scholar 

  16. H.S. Hudson, J. Br. Interplanet. Soc. 44, 139 (1991)

    ADS  Google Scholar 

  17. C.R. McInnes, J. Br. Interplanet. Soc. 55, 74 (2002)

    ADS  Google Scholar 

  18. J. Pearson, J. Oldson, E. Levin, Acta Astronaut. (2006). https://doi.org/10.1016/j.actaastro.2005.03.071

    Article  Google Scholar 

  19. R. Angel, P. Natl, Acad. Sci. USA (2006). https://doi.org/10.1073/pnas.0608163103

    Article  Google Scholar 

  20. C.R. McInnes, Proc. Mech. Eng. Mech. Eng. C J. Sci. Inst. (2010). https://doi.org/10.1243/09544062JMES1439

    Article  Google Scholar 

  21. R. Bewick, J.P. Sanchez, C.R. McInnes, Adv. Space Res. (2012). https://doi.org/10.1016/j.asr.2012.01.010

    Article  Google Scholar 

  22. R. Bewick et al., Adv. Space Res. (2013). https://doi.org/10.1016/j.asr.2012.10.024

    Article  Google Scholar 

  23. B. Govindasamy, K. Caldeira, Geophys. Res. Lett. (2000). https://doi.org/10.1029/1999GL006086

    Article  Google Scholar 

  24. B. Govindasamy, K. Caldeira, P.B. Duffy, Glob. Planet. Change (2003). https://doi.org/10.1016/S0921-8181(02)00195-9

    Article  Google Scholar 

  25. J.P. Sanchez, C. McInnes, J. Spacecr. Rockets (2011). https://doi.org/10.2514/1.49851

    Article  Google Scholar 

  26. J.P. Sanchez, C. McInnes, Acta Astronaut. (2012). https://doi.org/10.1016/j.actaastro.2011.12.010

    Article  Google Scholar 

  27. J. Shepherd, Ocean Chall. 17, 10 (2010)

    Google Scholar 

  28. J.G. Shepherd, Philos. Trans. R. Soc. A (2012). https://doi.org/10.1098/rsta.2012.0186

    Article  Google Scholar 

  29. M. Ghil, in Climatic Variations and Variability: Facts and Theories, ed. by A.L. Berger (Springer, Dordrecht, 1981) p. 461

  30. J.A. Burns, P.L. Lamy, S. Soter, Icarus (1979). https://doi.org/10.1016/0019-1035(79)90050-2

    Article  Google Scholar 

  31. M. Horányi, J.A. Burns, J. Geophys. Res. (1991). https://doi.org/10.1029/91JA01982

    Article  Google Scholar 

  32. R.R. Allan, Quart. J. Mech. Appl. Math. (1962). https://doi.org/10.1093/qjmam/15.3.283

    Article  Google Scholar 

  33. M. Tátrallyay et al., Adv. Space Res. (1992). https://doi.org/10.1016/0273-1177(92)90316-P

    Article  Google Scholar 

  34. R.M. Canup, J.E. Colwell, M. Horanyi, Icarus (1993). https://doi.org/10.1006/icar.1993.1133

    Article  Google Scholar 

  35. D.P. Hamilton, A.V. Krivov, Icarus (1996). https://doi.org/10.1006/icar.1996.0175

    Article  Google Scholar 

  36. A.V. Krivov, L.L. Sokolov, V.V. Dikarev, Celest. Mech. Dyn. Astron. (1995). https://doi.org/10.1007/BF00692293

    Article  Google Scholar 

  37. R.H. Battin, in An Introduction to the Mathematics and Methods of Astrodynamics, ed. by J.S. Przemieniecki (AIAA, Reston, 1999) p. 471

  38. S. Gong et al., Sci. China Technol. Sci. (2012). https://doi.org/10.1007/s11431-011-4691-7

    Article  Google Scholar 

  39. A.V. Krivov, J. Getino, Astron. Astrophys. 318, 308 (1997)

    ADS  Google Scholar 

  40. M. Wilck, I. Mann, Planet. Space Sci. (1996). https://doi.org/10.1016/0032-0633(95)00151-4

    Article  Google Scholar 

  41. S. Twomey, Atmospheric Aerosols (Elsevier, Amsterdam, 1977)

    Google Scholar 

  42. R. Bulirsch, J. Stoer, Numer. Math. (1966). https://doi.org/10.1007/BF02165234

    Article  Google Scholar 

  43. W.H. Press et al., Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, New York, 1992), p. 721

    Google Scholar 

  44. H.D. Curtis, Orbital Mechanics for Engineering Students, 3rd edn. (Elsevier Ltd., Oxford, 2013), p. 652

    Google Scholar 

  45. D.G. King-Hele, J.M. Rees, Proc. R. Soc. Lond. A (1962). https://doi.org/10.1098/rspa.1962.0245

    Article  Google Scholar 

  46. K.R. Clem et al., Nat. Clim. Change (2020). https://doi.org/10.1038/s41558-020-0815-z

    Article  Google Scholar 

  47. D.F. Swinehart, J. Chem. Educ. (1962). https://doi.org/10.1021/ed039p333

    Article  Google Scholar 

  48. T.G. Mayerhöfer, S. Pahlow, J. PoppThe, ChemPhysChem (2020). https://doi.org/10.1002/cphc.202000464

    Article  Google Scholar 

  49. H. Baoyin, Y. Chen, J. Li, Res. Astron. Astrophys. (2010). https://doi.org/10.1088/1674-4527/10/6/008

    Article  Google Scholar 

  50. Z. Hasnain, C.A. Lamb, S.D. Ross, Acta Astronaut. (2012). https://doi.org/10.1016/j.actaastro.2012.07.029

    Article  Google Scholar 

  51. D. García Yárnoz, J.P. Sánchez, C. McInnes, Celest. Dyn. Astron. Mech. (2013). https://doi.org/10.1007/s10569-013-9495-6

    Article  Google Scholar 

  52. P.E. Verrier, C.R. McInnes, J. Guid. Control Dyn. (2015). https://doi.org/10.2514/1.G000797

    Article  Google Scholar 

  53. S. Astakhov et al., Nature (2003). https://doi.org/10.1038/nature01622

    Article  Google Scholar 

  54. B. O’Leary, et al., Retrieval of asteroidal materials, space resources and space settlements (NASA SP-428, Washington DC, 1979). https://ntrs.nasa.gov/api/citations/19790024054/downloads/19790024054.pdf. Accessed 01 Nov 2020

  55. M. Free, A. Robock, J. Geophys. Res. (1999). https://doi.org/10.1029/1999JD900233

    Article  Google Scholar 

  56. F.J.T. Salazar, C.R. McInnes, O.C. Winter, Adv. Space Res. (2016). https://doi.org/10.1016/j.asr.2016.04.007

    Article  Google Scholar 

  57. F.J.T. Salazar, O.C. Winter, Astrophys. Space Sci. (2019). https://doi.org/10.1007/s10509-019-3633-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the CAPES (Coordination for the Improvement of Higher Education Personnel, Brazil), Grant 88887.478205 /2020-00, and Fapesp (São Paulo Research Foundation, Brazil), Grant 2016/ 24561-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. T. Salazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar, F.J.T., Prado, A.F.B.A. Sun-synchronous orbital dust ring to reduce climate change at the polar caps. Eur. Phys. J. Plus 137, 710 (2022). https://doi.org/10.1140/epjp/s13360-022-02866-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02866-6

Navigation