Skip to main content
Log in

Low-field linear magnetoresistance and transport parameters of (Cd\(_{1-x}\)Mn\(_x\))\(_3\)As\(_2\) polycrystals

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we analyzed the composition-dependent phenomena in (Cd\(_{1-x}\)Mn\(_x\))\(_3\)As\(_2\) polycrystals with x = 0 – 0.08. We showed that the Mn-induced stabilization of minor \(\alpha \mathrm {''}\)-phase in these systems occurs without substantial decrease in the characteristic crystallite sizes. The comparison of the estimated relevant length scales suggests that polycrystalline character of the studied samples plays only a minor role in electron transport, while the increase in defect density along with Mn content has more profound effect. We observed low-temperature linear magnetoresistance even for the samples with high Mn content. The decrease in the corresponding effect amplitude can be explained in terms of basic properties of the parent Cd\(_3\)As\(_2\) compound. Therefore, we argue that Mn-doping qualitatively conserves characteristic features of the Dirac semimetal phase in the system with relatively high Fermi energies, in accordance with previous band calculations of the (Cd\(_{1-x}\)Mn\(_x\))\(_3\)As\(_2\) compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data presented in the current study are available from the corresponding author on reasonable request.]

References

  1. T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, C. Fang, Catalogue of topological electronic materials. Nature 566, 475–479 (2019). https://doi.org/10.1038/s41586-019-0944-6

    Article  ADS  Google Scholar 

  2. M.G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B.A. Bernevig, Z. Wang, A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019). https://doi.org/10.1038/s41586-019-0954-4

    Article  ADS  Google Scholar 

  3. N.P. Armitage, E.J. Mele, A. Vishvanath, Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). https://doi.org/10.1103/RevModPhys.90.015001

    Article  MathSciNet  ADS  Google Scholar 

  4. H.-Z. Lu, S.-Q. Shen, Quantum transport in topological semimetals under magnetic fields. Front. Phys. 12, 127201 (2017). https://doi.org/10.1007/s11467-016-0609-y

  5. L.P. He, X.C. Hong, J.K. Dong, J. Pan, Z. Zhang, J. Zhang, S.Y. Li, Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd\(_3\)As\(_2\). Phys. Rev. Lett. 113, 246402 (2014). https://doi.org/10.1103/PhysRevLett.113.246402

    Article  Google Scholar 

  6. Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S.M. Brombosz, Z. Xiao, S. Jia, X.C. Xie, J. Wang, Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd\(_3\)As\(_2\). Phys. Rev. 5, 031037 (2015). https://doi.org/10.1103/PhysRevX.5.031037

    Article  Google Scholar 

  7. M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, M.Z. Hasan, Observation of a three dimensional topological Dirac semimetal phase in high-mobility Cd\(_3\)As\(_2\). Nat. Commun. 5, 3786 (2014). https://doi.org/10.1038/ncomms4786

    Article  Google Scholar 

  8. Z.K. Liu, J. Jiang, B. Zhou, Z.J. Wang, Y. Zhang, H.M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z.X. Shen, D.L. Feng, Z. Hussain, Y.L. Chen, A stable three-dimensional topological Dirac semimetal Cd\(_3\)As\(_2\). Nat. Mater. 13, 677–681 (2014). https://doi.org/10.1038/nmat3990

    Article  Google Scholar 

  9. S. Jeon, B.B. Zhou, A. Gyenis, B.E. Feldman, I. Kimchi, A.C. Potter, Q.D. Gibson, R.J. Cava, A. Vishwanath, A. Yazdani, Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd\(_3\)As\(_2\). Nat. Mater. 13, 851–856 (2014). https://doi.org/10.1038/nmat4023

    Article  Google Scholar 

  10. M. Uchida, Y. Nakazawa, S. Nishihaya, K. Akiba, M. Kriener, Y. Kozuka, A. Miyake, Y. Taguchi, M. Tokunaga, N. Nagaosa, Y. Tokura, M. Kawasaki, Quantum Hall states observed in thin films of Dirac semimetal Cd\(_3\)As\(_2\). Nat. Commun. 8, 2274 (2017). https://doi.org/10.1038/s41467-017-02423-1

    Article  Google Scholar 

  11. T. Schumann, L. Galletti, D.A. Kealhofer, H. Kim, M. Goyal, S. Stemmer, Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd\(_3\)As\(_2\). Phys. Rev. Lett. 120, 016801 (2018). https://doi.org/10.1103/PhysRevLett.120.016801

    Article  Google Scholar 

  12. A.V. Suslov, A.B. Davydov, L.N. Oveshnikov, L.A. Morgun, K.I. Kugel, V.S. Zakhvalinskii, E.A. Pilyuk, A.V. Kochura, A.P. Kuzmenko, V.M. Pudalov, B.A. Aronzon, Observation of subkelvin superconductivity in Cd\(_3\)As\(_2\) thin films. Phys. Rev. B 99, 094512 (2019). https://doi.org/10.1103/PhysRevB.99.094512

    Article  Google Scholar 

  13. L.N. Oveshnikov, A.B. Davydov, A.V. Suslov, A.I. Ril’, S.F. Marenkin, A.L. Vasiliev, B.A. Aronzon, Superconductivity and Shubnikov—de Haas effect in polycrystalline Cd\(_3\)As\(_2\) thin films. Sci. Rep. 10, 4601 (2020). https://doi.org/10.1038/s41598-020-61376-6

  14. A. Narayanan, M.D. Watson, S.F. Blake, N. Bruyant, L. Drigo, Y.L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P.C. Canfield, A.I. Coldea, Linear magnetoresistance caused by mobility fluctuations in \(n\)-doped Cd\(_3\)As\(_2\). Phys. Rev. Lett. 114, 117201 (2015). https://doi.org/10.1103/PhysRevLett.114.117201

    Article  Google Scholar 

  15. T. Liang, Q. Gibson, M.N. Ali, M. Liu, R.J. Cava, N.P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd\(_3\)As\(_2\). Nat. Mater. 14, 280–284 (2015). https://doi.org/10.1038/nmat4143

    Article  Google Scholar 

  16. J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, L. Lu, Large linear magnetoresistance in Dirac semimetal Cd\(_3\)As\(_2\) with Fermi surfaces close to the Dirac points. Phys. Rev. B 92, 081306 (2015). https://doi.org/10.1103/PhysRevB.92.081306

    Article  Google Scholar 

  17. Z.J. Xiang, D. Zhao, Z. Jin, C. Shang, L.K. Ma, G.J. Ye, B. Lei, T. Wu, Z.C. Xia, X.H. Chen, Angular-dependent phase factor of Shubnikov—de Haas oscillations in the Dirac semimetal Cd\(_3\)As\(_2\). Phys. Rev. Lett. 115, 226401 (2015). https://doi.org/10.1103/PhysRevLett.115.226401

    Article  Google Scholar 

  18. H. Li, H. He, H.-Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S.-Q. Shen, J. Wang, Negative magnetoresistance in Dirac semimetal Cd\(_3\)As\(_2\). Nat. Commun. 7, 10301 (2016). https://doi.org/10.1038/ncomms10301

    Article  Google Scholar 

  19. E.K. Arushanov, Crystal growth and characterization of II\(_3\)V\(_2\) compounds. Prog. Cryst. Growth Charact. 3, 211–255 (1980). https://doi.org/10.1016/0146-3535(80)90020-9

    Article  Google Scholar 

  20. Z. Wang, H. Weng, Q. Wu, X. Dai, Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd\(_3\)As\(_2\). Phys. Rev. B 88, 125427 (2013). https://doi.org/10.1103/PhysRevB.88.125427

    Article  Google Scholar 

  21. M.N. Ali, Q. Gibson, S. Jeon, B.B. Zhou, A. Yazdani, R.J. Cava, The crystal and electronic structures of Cd\(_3\)As\(_2\), the three-dimensional electronic analogue of graphene. Inorg. Chem. 53, 4062–4067 (2014). https://doi.org/10.1021/ic403163d

    Article  Google Scholar 

  22. R. Sankar, M. Neupane, S.-Y. Xu, C.J. Butler, I. Zeljkovic, I.P. Muthuselvam, F.-T. Huang, S.-T. Guo, S.K. Karna, M.-W. Chu, W.L. Lee, M.-T. Lin, R. Jayavel, V. Madhavan, M.Z. Hasa, F.C. Chou, Large single crystal growth, transport property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd\(_3\)As\(_2\). Sci. Rep. 5, 12966 (2015). https://doi.org/10.1038/srep12966

    Article  Google Scholar 

  23. W.J.M. De Jonge, M. Otto, C.J.M. Denissen, F.A.P. Blom, C. Van Der Steen, K. Kopinga, Spin-glass behavior of (Cd\(_{1-x}\)Mn\(_x\))\(_3\)As\(_2\). J. Magn. Magn. Mater. 31–34, 1373–1374 (1983). https://doi.org/10.1016/0304-8853(83)90932-0

    Article  Google Scholar 

  24. Z. Celinski, A. Burian, B. Rzepa, W. Zdanowicz, Preparation, structure and magnetic properties of (Cd\(_{1-x}\)Mn\(_x\))\(_3\)As\(_2\) crystals. Mater. Res. Bull. 22, 419–426 (1987). https://doi.org/10.1016/0025-5408(87)90061-4

    Article  Google Scholar 

  25. J.J. Neve, C. Bouwens, F. Blom, Shubnikov—de Haas effect in (Cd\(_{1-x}\)Mn\(_x\))\(_3\)As\(_2\). Solid State Commun. 38, 27–30 (1981). https://doi.org/10.1016/0038-1098(81)91156-X

    Article  Google Scholar 

  26. H. Wang, J. Ma, Q. Wei, J. Zhao, Mn doping effects on the gate-tunable transport properties of Cd\(_3\)As\(_2\) films epitaxied on GaAs. J. Semicond. 41, 072903 (2020). https://doi.org/10.1088/1674-4926/41/7/072903

    Article  Google Scholar 

  27. A. Rancati, N. Pournaghavi, M.F. Islam, A. Debernardi, C.M. Canali, Impurity-induced topological phase transitions in Cd\(_3\)As\(_2\) and Na\(_3\)Bi. Phys. Rev. B 102, 195110 (2020). https://doi.org/10.1103/PhysRevB.102.195110

    Article  Google Scholar 

  28. N.M. Shchelkachev, V.G. Yarzhemsky, Influence of crystal structure and 3\(d\) impurities on the electronic structure of the topological material Cd\(_3\)As\(_2\). Inorg. Mater. 54, 1093–1098 (2018). https://doi.org/10.1134/S0020168518110110

    Article  Google Scholar 

  29. H. Jin, Y. Dai, Y.-D. Ma, X.-R. Li, W. Wei, L. Yu, B.-B. Huang, The electronic and magnetic properties of transition-metal element doped three-dimensional Dirac semimetal in Cd\(_3\)As\(_2\). J. Mater. Chem. C 3, 3547–3551 (2015). https://doi.org/10.1039/c4tc02609h

    Article  Google Scholar 

  30. E.T. Kulatov, Yu.A. Uspenskii, L.N. Oveshnikov, A.B. Mekhiya, A.B. Davydov, A.I. Ril’, S.F. Marenkin, B.A. Aronzon, Electronic, magnetic and magnetotransport properties of Mn-doped Dirac semimetal Cd\(_3\)As\(_2\). Acta Mater. 219, 117249 (2021). https://doi.org/10.1016/j.actamat.2021.117249

  31. A.I. Ril’, S.F. Marenkin, V.V. Volkov, L.N. Oveshnikov, V.V. Kozlov, Formation of the \(\alpha ^{\prime \prime }\)-phase and study of the solubility of Mn in Cd\(_3\)As\(_2\). J. Alloys J. Alloys Compd. 892, 162082 (2021). https://doi.org/10.1016/j.jallcom.2021.162082

  32. N.N. Kovaleva, F.V. Kusmartsev, A.B. Mekhiya, I.N. Trunkin, D. Chvostova, A.B. Davydov, L.N. Oveshnikov, O. Pacherova, I.A. Sherstnev, A. Kusmartseva, K.I. Kugel, A. Dejneka, F.A. Pudonin, Y. Luo, B.A. Aronzon, Control of Mooij correlations at the nanoscale in the disordered metallic Ta-nanoisland FeNi multilayers. Sci. Rep. 10, 21172 (2020). https://doi.org/10.1038/s41598-020-78185-6

    Article  ADS  Google Scholar 

  33. E.I. Yakovleva, L.N. Oveshnikov, A.V. Kochura, K.G. Lisunov, E. Lahderanta, B.A. Aronzon, Anomalous Hall effect in the In\(_{1-x}\)Mn\(_x\)Sb dilute magnetic semiconductor with MnSb inclusions. JETP Lett. 101, 130–135 (2015). https://doi.org/10.1134/S0021364015020149

    Article  Google Scholar 

  34. L.N. Oveshnikov, E.I. Nekhaeva, A.V. Kochura, A.B. Davydov, M.A. Shakhov, S.F. Marenkin, O.A. Novodvorskii, A.P. Kuzmenko, A.L. Vasiliev, B.A. Aronzon, E. Lahderanta, High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)\(_{1-x}\)(MnSb)\(_x\) alloy. Beilstein J. Nanotechnol. 9, 2457–2465 (2018). https://doi.org/10.3762/bjnano.9.230

    Article  Google Scholar 

  35. A.B. Mekhiya, A.A. Kazakov, L.N. Oveshnikov, A.B. Davydov, A.I. Ril, S.F. Marenkin, B.A. Aronzon, Quantum corrections and magnetotransport in 3D Dirac semimetal Cd\(_{3-x}\)Mn\(_x\)As\(_2\) films. Semiconductors 53, 1439–1444 (2019). https://doi.org/10.1134/S1063782619110137

    Article  Google Scholar 

  36. I. Rosenman, Effet Shubnikov de Haas dans Cd\(_3\)As\(_2\): forme de la surface de Fermi et modele non parabolique de la bande de conduction. J. Phys. Chem. Solids 30, 1385–1402 (1969). https://doi.org/10.1016/0022-3697(69)90200-5

    Article  Google Scholar 

  37. X. Yuan, P. Cheng, L. Zhang, C. Zhang, J. Wang, Y. Liu, Q. Sun, P. Zhou, D.W. Zhang, Z. Hu, X. Wan, H. Yan, Z. Li, F. Xiu, Direct observation of Landau level resonance and mass generation in Dirac semimetal Cd\(_3\)As\(_2\). Nano Lett. 17, 2211–2219 (2017). https://doi.org/10.1021/acs.nanolett.6b04778

    Article  Google Scholar 

  38. A.V. Kochura, L.N. Oveshnikov, A.P. Kuzmenko, A.B. Davydov, S.Y. Gavrilkin, V.S. Zakhvalinskii, V.A. Kulbachinskii, N.A. Khokhlov, B.A. Aronzon, Vapor-phase synthesis and magnetoresistance of (Cd\(_{0.093}\)Zn\(_{0.007}\))\(_3\)As\(_2\) single crystals. JETP Lett. 109, 175–179 (2019). https://doi.org/10.1134/S0021364019030019

    Article  Google Scholar 

  39. H. Lu, X. Zhang, Y. Bian, S. Jia, Topological phase transition in single crystals of (Cd\(_{1-x}\)Zn\(_{x}\))\(_3\)As\(_2\). Sci. Rep. 7, 3148 (2017). https://doi.org/10.1038/s41598-017-03559-2

    Article  Google Scholar 

  40. B. Skinner, Coulomb disorder in three-dimensional Dirac systems. Phys. Rev. B 90, 060202 (2014). https://doi.org/10.1103/PhysRevB.90.060202

    Article  ADS  Google Scholar 

  41. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buchner, R.J. Cava, Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014). https://doi.org/10.1103/PhysRevLett.113.027603

    Article  ADS  Google Scholar 

  42. J. Cao, S. Liang, C. Zhang, Y. Liu, J. Huang, Z. Jin, Z.-G. Chen, Z. Wang, Q. Wang, J. Zhao, S. Li, X. Dai, J. Zou, Z. Xia, L. Li, F. Xiu, Landau level splitting in Cd\(_3\)As\(_2\) under high magnetic fields. Nat. Commun. 6, 7779 (2015). https://doi.org/10.1038/ncomms8779

    Article  Google Scholar 

  43. M.M. Parish, P.B. Littlewood, Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 426, 162–165 (2003). https://doi.org/10.1038/nature02073

    Article  ADS  Google Scholar 

  44. M.M. Parish, P.B. Littlewood, Classical magnetotransport of inhomogeneous conductors. Phys. Rev. B 72, 094417 (2005). https://doi.org/10.1103/PhysRevB.72.094417

    Article  ADS  Google Scholar 

  45. D. Stroud, F.P. Pan, Effect of isolated inhomogeneities on the galvanomagnetic properties of solids. Phys. Rev. B 13, 1434–1438 (1976). https://doi.org/10.1103/PhysRevB.13.1434

    Article  ADS  Google Scholar 

  46. P. Kapitza, The change of electrical conductivity in strong magnetic fields. Part I.—experimental results. Proc. R. Soc. A Math. Phys. Eng. Sci. 123, 292–341 (1929). https://doi.org/10.1098/rspa.1929.0072

    Article  ADS  Google Scholar 

  47. P. Kapitza, The change of electrical conductivity in strong magnetic fields. Part II.—the analysis and the interpretation of the experimental results. Proc. R. Soc. A Math. Phys. Eng. Sci. 123, 342–372 (1929). https://doi.org/10.1098/rspa.1929.0073

    Article  ADS  Google Scholar 

  48. A.A. Abrikosov, Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998). https://doi.org/10.1103/physrevb.58.2788

    Article  ADS  Google Scholar 

  49. A.A. Abrikosov, Quantum linear magnetoresistance. Europhys. Lett. 49, 789–793 (2000). https://doi.org/10.1209/epl/i2000-00220-2

    Article  ADS  Google Scholar 

  50. D. Nandi, B. Skinner, G.H. Lee, K.-F. Huang, K. Shain, C.-Z. Chang, Y. Ou, S.-P. Lee, J. Ward, J.S. Moodera, P. Kim, B.I. Halperin, A. Yacoby, Signatures of long-range-correlated disorder in the magnetotransport of ultrathin topological insulators. Phys. Rev. B 98, 214203 (2018). https://doi.org/10.1103/PhysRevB.98.214203

    Article  ADS  Google Scholar 

  51. C.M. Wang, X.L. Lei, Linear magnetoresistance on the topological surface. Phys. Rev. B 86, 035442 (2012). https://doi.org/10.1103/PhysRevB.86.035442

    Article  ADS  Google Scholar 

  52. D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010). https://doi.org/10.1103/RevModPhys.82.1959

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. J. Guo, X. Zhao, N. Sun, X. Xiao, W. Liu, Z. Zhang, Tunable quantum Shubnikov-de Hass oscillations in antiferromagnetic topological semimetal Mn-doped Cd\(_3\)As\(_2\). J. Mater. Sci. Technol. 76, 247–253 (2021). https://doi.org/10.1016/j.jmst.2020.11.023

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation, Grant No. 21-12-00254 (https://rscf.ru/en/project/21-12-00254/). X-ray diffraction studies were performed at the Center of Shared Equipment of IGIC RAS. Authors are grateful to D.R. Streltsov for the help in manuscript preparation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1259 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oveshnikov, L.N., Ril’, A.I., Mekhiya, A.B. et al. Low-field linear magnetoresistance and transport parameters of (Cd\(_{1-x}\)Mn\(_x\))\(_3\)As\(_2\) polycrystals. Eur. Phys. J. Plus 137, 374 (2022). https://doi.org/10.1140/epjp/s13360-022-02560-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02560-7

Navigation