Skip to main content
Log in

High-dimensional Grover multi-target search algorithm on Cirq

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 16 March 2022

This article has been updated

Abstract

High-dimensional computing, compared to traditional qubit computing, has the advantage of operating in a larger scale and storing more information. Considering its advantages, it is of great importance to adapt existing quantum algorithms to high dimension for quantum computing. Yet, the challenges pertaining to high-dimensional quantum computing have limited the studies in this field. In this study, the Grover Search Algorithm for two, three and four targets in high dimension is implemented on Cirq. We concluded that computing in high dimension provides an advantage in terms of capacity and number of qudits used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability and material

Not applicable.

Change history

References

  1. P.R. Feynman, Simulating physics with computers, in Feynman and computation (CRC Press, 2018), pp. 133–153

  2. A. Frank, A. Kunal, B. Ryan, B. Dave, C. Joseph Bardin, B. Rami, B. Rupak, B. Sergio, G.S.L. Fernando Brandao, A. David Buell, Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  ADS  Google Scholar 

  3. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, W. Dian, X. Ding, H. Yi et al., Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)

    Article  ADS  Google Scholar 

  4. J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091 (1995)

    Article  ADS  Google Scholar 

  5. Ibm quantum experience. https://quantum-computing.ibm.com, 05 2021. Accessed 2021-05-27

  6. S. Khasminskaya, F. Pyatkov, K. S.łowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M.M. Kappes, Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photonics 10(11), 727–732 (2016)

    Article  ADS  Google Scholar 

  7. G.D. Cory, F.A. Fahmy, F.T. Havel, et al. Proceedings of physcomp’96 (1996)

  8. W. Yuchen, H. Zixuan, C.B. Sanders, K. Sabre, Qudits and high-dimensional quantum computing. Front. Phys. 8, 479 (2020)

    Google Scholar 

  9. M. Howard, J. Vala, Qudit versions of the qubit \(\pi \)/8 gate. Phys. Rev. A 86(2), 022316 (2012)

    Article  ADS  Google Scholar 

  10. J. Daboul, X. Wang, B.C. Sanders, Quantum gates on hybrid qudits. J. Phys. A: Math. Gen. 36(10), 2525 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. J.C. Garcia-Escartin, P. Chamorro-Posada, A swap gate for qudits. Quantum Inf. Process. 12(12), 3625–3631 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. T.C. Ralph, K.J. Resch, A. Gilchrist, Efficient toffoli gates using qudits. Phys. Rev. A 75(2), 022313 (2007)

    Article  ADS  Google Scholar 

  13. E.O. Kiktenko, A.S. Nikolaeva, X.U. Peng, G.V. Shlyapnikov, A.K. Fedorov, Scalable quantum computing with qudits on a graph. Phys. Rev. A 101(2), 022304 (2020)

    Article  ADS  Google Scholar 

  14. Z. Gedik, I.A. Silva, B. Çakmak, G. Karpat, E.L.G. Vidoto, D.D.O. Soares-Pinto, E.R. de Azevedo, F.F. Fanchini, Computational speed-up with a single qudit. Sci. Rep. 5(1), 1–7 (2015)

    Article  Google Scholar 

  15. D.M. Nguyen, S. Kim, Quantum key distribution protocol based on modified generalization of Deutsch-Jozsa algorithm in d-level quantum system. Int. J. Theor. Phys. 58(1), 71–82 (2019)

    Article  Google Scholar 

  16. K. Nagata, H. Geurdes, S.K. Patro, S. Heidari, A. Farouk, T. Nakamura, Generalization of the Bernstein-Vazirani algorithm beyond qubit systems. Quantum Stud. Math. Found. 7(1), 17–21 (2020)

    Article  MathSciNet  Google Scholar 

  17. Y. Cao, S.-G. Peng, C. Zheng, G.-L. Long, Quantum Fourier transform and phase estimation in qudit system. Commun. Theor. Phys. 55(5), 790 (2011)

    Article  ADS  Google Scholar 

  18. A. Bocharov, M. Roetteler, K.M. Svore, Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96(1), 012303 (2017)

    Article  ADS  Google Scholar 

  19. S.S. Ivanov, H.S. Tonchev, N.V. Vitanov, Time-efficient implementation of quantum search with qudits. Phys. Rev. A 85(6), 062321 (2012)

    Article  ADS  Google Scholar 

  20. H.H. Lu, Z. Hu, M.S. Alshaykh, A.J. Moore, Y. Wang, P. Imany, A.M. Weiner, S. Kais, Quantum phase estimation with time-frequency qudits in a single photon. Adv. Quantum Technol. 3(2), 1900074 (2020)

    Article  Google Scholar 

  21. X. Gao, M. Erhard, A. Zeilinger, M. Krenn, Computer-inspired concept for high-dimensional multipartite quantum gates. Phys. Rev. Lett. 125(5), 050501 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. S.D. Bartlett, H. de Guise, B.C. Sanders, Quantum encodings in spin systems and harmonic oscillators. Phys. Rev. A 65(5), 052316 (2002)

    Article  ADS  Google Scholar 

  23. M.R.A. Adcock, P. Høyer, B.C. Sanders, Quantum computation with coherent spin states and the close Hadamard problem. Quantum Inf. Process. 15(4), 1361–1386 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.B. Klimov, R. Guzman, J.C. Retamal, Qutrit quantum computer with trapped ions. Phys. Rev. A 67(6), 062313 (2003)

    Article  ADS  Google Scholar 

  25. S. Dogra, K. Dorai et al., Determining the parity of a permutation using an experimental nmr qutrit. Phys. Lett. A 378(46), 3452–3456 (2014)

    Article  ADS  Google Scholar 

  26. M.N. Leuenberger, D. Loss, Quantum computing in molecular magnets. Nature 410(6830), 789–793 (2001)

    Article  ADS  Google Scholar 

  27. I. Vagniluca, B.D. Lio, D. Rusca, D. Cozzolino, Y. Ding, H. Zbinden, A. Zavatta, L.K. Oxenløwe, D. Bacco, Efficient time-bin encoding for practical high-dimensional quantum key distribution. Phys. Rev. Appl. 14(1), 014051 (2020)

    Article  ADS  Google Scholar 

  28. L. Sheridan, V. Scarani, Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82(3), 030301 (2010)

    Article  ADS  Google Scholar 

  29. D. Cozzolino, B. Da Lio, D. Bacco, L.K. Oxenløwe, High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2(12), 1900038 (2019)

    Article  Google Scholar 

  30. D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai et al., Boosting the secret key rate in a shared quantum and classical fibre communication system. Commun. Phys. 2(1), 1–8 (2019)

    Article  Google Scholar 

  31. Y.-H. Luo, H.-S. Zhong, M. Erhard, X.-L. Wang, L.-C. Peng, M. Krenn, X. Jiang, L. Li, N.-L. Liu, L. Chao-Yang et al., Quantum teleportation in high dimensions. Phys. Rev. Lett. 123(7), 070505 (2019)

    Article  ADS  Google Scholar 

  32. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  33. S. Simanraj, Grover’s search algorithm for n qubits with optimal number of iterations. arXiv preprint arXiv:2011.04051 (2020)

  34. S. Amit, M. Ritajit, S. Debasri, C. Amlan, S.-K. Susmita, Asymptotically improved Grover’s algorithm in any dimensional quantum system with novel decomposed \(n\)-qudit toffoli gate. arXiv preprint arXiv:2012.04447 (2020)

  35. S. Amit, S. Debasri, C. Amlan, Circuit design for \( k \)-coloring problem and its implementation in any dimensional quantum system. arXiv preprint arXiv:2105.14281 (2021)

  36. Google cirq. https://quantumai.google/cirq, 05 2021. Accessed 2021-02-20

  37. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information. Phys. Today 54(2), 60 (2010)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for their valuable suggestion.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Erdi Acar, Sabri Gündüz, Güven Akpınar and İhsan Yılmaz took part in conceptualization; Erdi Acar involved in coding; Erdi Acar, Sabri Gündüz and İhsan Yılmaz involved in formal analysis; Erdi Acar, Sabri Gündüz, Güven Akpınar and İhsan Yılmaz took part in investigation; Erdi Acar, Sabri Gündüz, Güven Akpınar and İhsan Yılmaz involved in methodology; Sabri Gündüz took part in resources; Sabri Gündüz involved in software; İhsan Yılmaz involved in supervision; Sabri Gündüz and Erdi Acar took part in visualization; Sabri Gündüz involved in writing—original draft preparation; Sabri Gündüz, Erdi Acar and İhsan Yılmaz took part in writing—review and editing. All authors read and approved the final manuscript.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The original online version of this article was revised to correct affiliations 1 to 3 and add affiliations 4 and 5: 4 Department of Physics, Institute of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey 5 Department of Computer Engineering, Faculty of Enggineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acar, E., Gündüz, S., Akpınar, G. et al. High-dimensional Grover multi-target search algorithm on Cirq. Eur. Phys. J. Plus 137, 244 (2022). https://doi.org/10.1140/epjp/s13360-022-02460-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02460-w

Navigation