Skip to main content
Log in

Analytical approximations of three-point generalized Thomas–Fermi and Lane–Emden–Fowler type equations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we study multi-point singular boundary value problems (BVPs) that received considerable interest in various scientific and engineering applications. We focus this study on obtaining approximate solutions, particularly of the three-point generalized Thomas–Fermi and Lane–Emden–Fowler BVPs. Our algorithm employs two main steps. We first convert the three-point generalized Thomas–Fermi BVP to an equivalent integral equation, which overcomes the singularity behavior at the origin. We next apply the powerful decomposition method to the resulting integral equation. The decomposition method approximates the solution in a rapidly convergent series with easily computable components. In addition, sufficient theorems are supplied to confirm the uniqueness of the resolution of the problem. Finally, we examine the convergence analysis of the proposed method. Several examples are included to show the accuracy, applicability and power of the employed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, S. Chandrasekar, An introduction to the study of stellar structure. Ciel et Terre 55, 412 (1939)

    ADS  Google Scholar 

  2. S. Lin, Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J. Theor. Biol. 60(2), 449–457 (1976)

    ADS  Google Scholar 

  3. D. McElwain, A re-examination of oxygen diffusion in a spherical cell with Michaelis–Menten oxygen uptake kinetics. J. Theor. Biol. 71, 255–263 (1978)

    ADS  Google Scholar 

  4. B. Gray, The distribution of heat sources in the human head-theoretical considerations. J. Theor. Biol. 82(3), 473–476 (1980)

    ADS  Google Scholar 

  5. R. Duggan, A. Goodman, Pointwise bounds for a nonlinear heat conduction model of the human head. Bull. Math. Biol. 48(2), 229–236 (1986)

    MATH  Google Scholar 

  6. A.-M. Wazwaz, Solving the non-isothermal reaction–diffusion model equations in a spherical catalyst by the variational iteration method. Chem. Phys. Lett. 679, 132–136 (2017)

    ADS  Google Scholar 

  7. R. Ma, A survey on nonlocal boundary value problems. Appl. Math. E-Notes 7, 257–279

  8. Y. Zou, Q. Hu, R. Zhang, On numerical studies of multi-point boundary value problem and its fold bifurcation. Appl. Math. Comput. 185(1), 527–537 (2007)

    MathSciNet  MATH  Google Scholar 

  9. L. Bobisud, Existence of solutions for nonlinear singular boundary value problems. Appl. Anal. 35(1–4), 43–57 (1990)

    MathSciNet  MATH  Google Scholar 

  10. L. Thomas, The calculation of atomic fields, in: Mathematical Proceedings of the Cambridge Philosophical Society, vol 23 (Cambridge Univ Press, 1927, pp 542–548)

  11. E. Fermi, Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei 6(602–607), 32 (1927)

    Google Scholar 

  12. G. Reddien, Projection methods and singular two point boundary value problems. Numer. Math. 21(3), 193–205 (1973)

    MathSciNet  MATH  Google Scholar 

  13. M. Chawla, C. Katti, Finite difference methods and their convergence for a class of singular two point boundary value problems. Numer. Math. 39(3), 341–350 (1982)

    MathSciNet  MATH  Google Scholar 

  14. S. Iyengar, P. Jain, Spline finite difference methods for singular two point boundary value problems. Numer. Math. 50(3), 363–376 (1986)

    MathSciNet  MATH  Google Scholar 

  15. M. Inc, M. Ergut, Y. Cherruault, A different approach for solving singular two-point boundary value problems. Kybernetes Int. Jo. Syst. Cybern. 34(7), 934–940 (2005)

    MATH  Google Scholar 

  16. M. Dehghan, M. Tatari, The use of Adomian decomposition method for solving problems in calculus of variations. Math. Probl. Eng. (2006)

  17. M. Dehghan, F. Shakeri, The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys. Scr. 78(6), 065004 (2008)

    ADS  MATH  Google Scholar 

  18. M. Dehghan, M. Shakourifar, A. Hamidi, The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique. Chaos Solitons Fractals 39(5), 2509–2521 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  19. M.K. Kadalbajoo, V. Kumar, B-spline method for a class of singular two-point boundary value problems using optimal grid. Appl. Math. Comput. 188(2), 1856–1869 (2007)

    MathSciNet  MATH  Google Scholar 

  20. M. Lakestani, M. Dehghan, Four techniques based on the B-spline expansion and the collocation approach for the numerical solution of the Lane–Emden equation. Math. Methods Appl. Sci. 36(16), 2243–2253 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  21. S. Khuri, A. Sayfy, A novel approach for the solution of a class of singular boundary value problems arising in physiology. Math. Comput. Model. 52(3), 626–636 (2010)

    MathSciNet  MATH  Google Scholar 

  22. A. Ebaid, A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method. J. Comput. Appl. Math. 235(8), 1914–1924 (2011)

    MathSciNet  MATH  Google Scholar 

  23. R. Singh, J. Kumar, G. Nelakanti, Numerical solution of singular boundary value problems using Green’s function and improved decomposition method. J. Appl. Math. Comput. 43(1–2), 409–425 (2013)

    MathSciNet  MATH  Google Scholar 

  24. R. Singh, J. Kumar, An efficient numerical technique for the solution of nonlinear singular boundary value problems. Comput. Phys. Commun. 185(4), 1282–1289 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  25. K. Parand, M. Dehghan, A. Rezaei, S. Ghaderi, An approximation algorithm for the solution of the nonlinear Lane–Emden type equations arising in astrophysics using Hermite functions collocation method. Comput. Phys. Commun. 181(6), 1096–1108 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  26. A. Wazwaz, R. Rach, Comparison of the Adomian decomposition method and the variational iteration method for solving the Lane–Emden equations of the first and second kinds. Kybernetes 40(9/10), 1305–1318 (2011)

    MathSciNet  Google Scholar 

  27. K. Parand, M. Dehghan, A. Pirkhedri, The Sinc-collocation method for solving the Thomas–Fermi equation. J. Comput. Appl. Math. 237(1), 244–252 (2013)

    MathSciNet  MATH  Google Scholar 

  28. R. Singh, N. Das, J. Kumar, The optimal modified variational iteration method for the Lane–Emden equations with Neumann and Robin boundary conditions. Eur. Phys. J. Plus 132(6), 1–11 (2017)

    Google Scholar 

  29. R. Singh, Optimal homotopy analysis method for the non-isothermal reaction–diffusion model equations in a spherical catalyst. J. Math. Chem. 56, 2579–2590 (2018)

    MathSciNet  MATH  Google Scholar 

  30. R. Singh, Analytic solution of singular Emden–Fowler-type equations by Green’s function and homotopy analysis method. Eur. Phys. J. Plus 134(11), 583 (2019)

    Google Scholar 

  31. R. Singh, H. Garg, V. Guleria, Haar wavelet collocation method for Lane–Emden equations with Dirichlet, Neumann and Neumann–Robin boundary conditions. J. Comput. Appl. Math. 346, 150–161 (2019)

    MathSciNet  MATH  Google Scholar 

  32. R. Singh, V. Guleria, M. Singh, Haar wavelet quasilinearization method for numerical solution of Emden–Fowler type equations. Math. Comput. Simul. 174, 123–133 (2020)

    MathSciNet  MATH  Google Scholar 

  33. R. Singh, J. Shahni, H. Garg, A. Garg, Haar wavelet collocation approach for Lane–Emden equations arising in mathematical physics and astrophysics. The European Physical Journal Plus 134(11), 548 (2019)

    ADS  Google Scholar 

  34. J. Shahni, R. Singh, Laguerre wavelet method for solving Thomas–Fermi type equations. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01309-7

    Article  MATH  Google Scholar 

  35. M. Singh, A.K. Verma, R.P. Agarwal, Maximum and anti-maximum principles for three point SBVPs and nonlinear three point SBVPs. J. Appl. Math. Comput. 47(1), 249–263 (2015)

    MathSciNet  MATH  Google Scholar 

  36. A.K. Verma, M. Singh, Maximum principle and nonlinear three point singular boundary value problems arising due to spherical symmetry. Commun. Appl. Anal. 19, 175–190 (2015)

    Google Scholar 

  37. M. Singh, A.K. Verma, R.P. Agarwal, On an iterative method for a class of 2 point & 3 point nonlinear SBVPs. J. Appl. Anal. Comput. 9(4), 1242–1260 (2019)

    MathSciNet  MATH  Google Scholar 

  38. A.K. Verma, N. Kumar, M. Singh, R.P. Agarwal, A note on variation iteration method with an application on Lane–Emden equations. Eng. Comput. (2021). https://doi.org/10.1108/EC-10-2020-0604

    Article  Google Scholar 

  39. G. Adomian, R. Rach, Inversion of nonlinear stochastic operators. J. Math. Anal. Appl. 91(1), 39–46 (1983)

    MathSciNet  MATH  Google Scholar 

  40. G. Adomian, R. Rach, A new algorithm for matching boundary conditions in decomposition solutions. Appl. Math. Comput. 57(1), 61–68 (1993)

    MathSciNet  MATH  Google Scholar 

  41. A. Wazwaz, Approximate solutions to boundary value problems of higher order by the modified decomposition method. Comput. Math. Appl. 40(6–7), 679–691 (2000)

    MathSciNet  MATH  Google Scholar 

  42. A. Wazwaz, A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems. Comput. Math. Appl. 41(10–11), 1237–1244 (2001)

    MathSciNet  MATH  Google Scholar 

  43. A. Wazwaz, A new method for solving singular initial value problems in the second-order ordinary differential equations. Appl. Math. Comput. 128(1), 45–57 (2002)

    MathSciNet  MATH  Google Scholar 

  44. S. Momani, K. Moadi, A reliable algorithm for solving fourth-order boundary value problems. J. Appl. Math. Comput. 22(3), 185–197 (2006)

    MathSciNet  MATH  Google Scholar 

  45. M. Dehghan, M. Tatari, Finding approximate solutions for a class of third-order non-linear boundary value problems via the decomposition method of Adomian. Int. J. Comput. Math. 87(6), 1256–1263 (2010)

    MathSciNet  MATH  Google Scholar 

  46. R. Rach, A new definition of the Adomian polynomials. Kybernetes 37(7), 910–955 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randhir Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Wazwaz, AM. Analytical approximations of three-point generalized Thomas–Fermi and Lane–Emden–Fowler type equations. Eur. Phys. J. Plus 137, 63 (2022). https://doi.org/10.1140/epjp/s13360-021-02301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02301-2

Navigation