Skip to main content

Advertisement

Log in

Evolution of axially and reflection symmetric source in energy–momentum squared gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper aims to investigate the effects of \(f(R, T^2)\) gravity on the dynamical evolution of axially and reflection symmetric anisotropic and dissipative fluid, where R is the scalar curvature and \(T^2 =T_{\omega \lambda }T^{\omega \lambda }\), with \(T_{\omega \lambda }\) being the stress–energy tensor. With a systematic structure, we investigate modified gravitational field and dynamical equations. In addition, we use the heat transport equation to analyze the thermodynamics of our problem. The Weyl tensor is utilized to evaluate a generalized version of scalar variables from the Riemann tensor. We investigate the influence of \(f(R, T^2)\) corrections on the dynamics of the gravitating source. We conclude that modified scalar variables bearing the effects of electric and magnetic components of the Weyl tensor play a vital role in the evolution of compact objects. We analyze that in geodesic and vorticity-free evolution, \(\varepsilon _{KL}=\frac{\kappa '}{2}\Pi _{KL}\), where \(\kappa '=\frac{\kappa }{f_R}(1-2\mu f_{T^2})\). This reveals that the physics is the same but the couplings of both theories (GR and \(f(R, T^2)\)) are different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. B.A. Pietrobon, D. Marinucci, Phys. Rev. D 74, 043524 (2006)

    Article  ADS  Google Scholar 

  3. T. Giannantonio et al., Phys. Rev. D 74, 063520 (2006)

    Article  ADS  Google Scholar 

  4. A.G. Riess et al., Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  5. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  6. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  7. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Z. Yousaf, Phys. Dark Univ. 28, 100509 (2020)

    Article  Google Scholar 

  10. M. Sharif, Z. Yousaf, Eur. Phys. J. C 75, 194 (2015)

    Article  ADS  Google Scholar 

  11. S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)

    Article  Google Scholar 

  12. Z. Yousaf, M.Z. Bhatti, Mon. Not. Roy. Astron. Soc. 458, 1785 (2016)

    Article  ADS  Google Scholar 

  13. R. Durrer, R. Maartens, Gen. Relativ. Gravit. 40, 301 (2008)

    Article  ADS  Google Scholar 

  14. T. Harko, F.S. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  15. M. Kiran, D.R.K. Reddy, Astrophys. Space Sci. 346, 521 (2013)

    Article  ADS  Google Scholar 

  16. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 93, 064059 (2016)

    Article  ADS  Google Scholar 

  17. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 93, 124048 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. P.H.R.S. Moraes, R.A.C. Correa, R.V. Lobato, J. Cosmol. Astropart. Phys. 2017, 029 (2017)

    Article  Google Scholar 

  19. Z. Haghani, T. Harko, F.S.N. Lobo, H.R. Sepangi, S. Shahidi, Phys. Rev. D 88, 044023 (2013)

    Article  ADS  Google Scholar 

  20. Z. Yousaf, K. Bamba, M.Z. Bhatti, U. Farwa, Eur. Phys. J. A 54, 122 (2018)

    Article  ADS  Google Scholar 

  21. Z. Yousaf, M.Z. Bhatti, U. Farwa, Class. Quant. Grav. 34, 145002 (2017)

    Article  ADS  Google Scholar 

  22. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 95, 024024 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Katırcı, M. Kavuk, Eur. Phys. J. Plus 129, 1 (2014)

    Article  Google Scholar 

  24. Ö. Akarsu, N. Katırcı, S. Kumar, Phys. Rev. D 97, 024011 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. C.V.R. Board, J.D. Barrow, Phys. Rev. D 96, 123517 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Roshan, F. Shojai, Phys. Rev. D 94, 044002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ö. Akarsu, J.D. Barrow, S. Çıkıntoğlu, K.Y. Ekşi, N. Katırcı, Phys. Rev. D 97, 124017 (2018)

    Article  ADS  Google Scholar 

  28. N. Nari, M. Roshan, Phys. Rev. D 98, 024031 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ö. Akarsu, J.D. Barrow, C.V.R. Board, N.M. Uzun, J.A. Vazquez, Eur. Phys. J. C 79, 1 (2019)

    Article  Google Scholar 

  30. M.C.F. Faria, C.J.A.P. Martins, F. Chiti, B.S.A. Silva, Astron. Astrophys. 625, A127 (2019)

    Article  ADS  Google Scholar 

  31. Ö. Akarsu, J.D. Barrow, N.M. Uzun, Phys. Rev. D 102, 124059 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. C.-Y. Chen, P. Chen, Phys. Rev. D 101, 064021 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. E. Nazari, F. Sarvi, M. Roshan, Phys. Rev. D 102, 064016 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Di Prisco, L. Herrera, M. Esculpi, Class. Quant. Grav. 13, 1053 (1996)

    Article  ADS  Google Scholar 

  35. L. Herrera, N.O. Santos, Phys. Rev. D 70, 084004 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  36. L. Herrera, Int. J. Mod. Phys. D 15, 2197 (2006)

    Article  ADS  Google Scholar 

  37. M.Z. Bhatti, Z. Yousaf, S. Hanif, Phys. Dark Univ. 16, 34 (2017)

    Article  Google Scholar 

  38. M.Z. Bhatti, K. Bamba, Z. Yousaf, M. Nawaz, J. Cosmol. Astropart. Phys., (2019)

  39. M.Z. Bhatti, Z. Yousaf, M. Nawaz, Int. J. Geom. Meth. Mod. Phys. 17, 2050017 (2020)

    Article  Google Scholar 

  40. G.J. Olmo, D. Rubiera-Garcia, Universe 1, 173 (2015)

    Article  ADS  Google Scholar 

  41. L. Herrera, N.O. Santos, Class. Quant. Grav. 22, 2407 (2005)

    Article  ADS  Google Scholar 

  42. L. Herrera, A. Di Prisco, G. Le Denmat, M.A.H. MacCallum, N.O. Santos, Phys. Rev. D 76, 064017 (2007)

    Article  ADS  Google Scholar 

  43. L. Herrera, A. Di Prisco, J. Ibáñez, J. Ospino, Phys. Rev. D 87, 024014 (2013)

    Article  ADS  Google Scholar 

  44. M.Z. Bhatti, Z. Yousaf, M. Yousaf, Phys. Dark Univ. 28, 100501 (2020)

    Article  Google Scholar 

  45. L. Herrera, J. Ospino, A. Di Prisco, E. Fuenmayor, O. Troconis, Phys. Rev. D 79, 064025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  46. L. Herrera, A. Di Prisco, J. Ospino, J. Carot, Phys. Rev. D 82, 024021 (2010)

    Article  ADS  Google Scholar 

  47. L. Herrera, A. Di Prisco, J. Ibáñez, Phys. Rev. D 84, 064036 (2011)

    Article  ADS  Google Scholar 

  48. L. Herrera, A. Di Prisco, J. Ibáñez, Phys. Rev. D 84, 107501 (2011)

    Article  ADS  Google Scholar 

  49. Z. Yousaf, Eur. Phys. J. Plus 134, 245 (2019)

    Article  Google Scholar 

  50. M.Z. Bhatti, Z. Yousaf, Z. Tariq, Eur. Phys. J. C 81, 1 (2021)

    Article  Google Scholar 

  51. Z. Yousaf, M.Z. Bhatti, U. Farwa, Ann. Phys. 433, 168601 (2021)

    Article  Google Scholar 

  52. L. Herrera, A. Di Prisco, J. Ibáñez, J. Ospino, Phys. Rev. D 89, 084034 (2014)

    Article  ADS  Google Scholar 

  53. L. Herrera, J. Martin, J. Ospino, J. Math. Phys. 43, 4889 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  55. P.H. Nguyen, J.F. Pedraza, Phys. Rev. D 88, 064020 (2013)

    Article  ADS  Google Scholar 

  56. A. Putney, Astrophys. J. Lett. 451, L67 (1995)

    Article  ADS  Google Scholar 

  57. G.D. Schmidt, P.S. Smith, Astrophys. J. 448, 305 (1995)

    Article  ADS  Google Scholar 

  58. R.G. Felipe, E.L. Fune, D.M. Paret, A.P. Martínez, J. Phys. 39, 045006 (2012)

    Article  ADS  Google Scholar 

  59. E.J. Ferrer, V. de La Incera, J.P. Keith, I. Portillo, P.L. Springsteen, Phys. Rev. C 82, 065802 (2010)

    Article  ADS  Google Scholar 

  60. E.N.E. Van Dalen, A.E.L. Dieperink, Phys. Rev. C 69, 025802 (2004)

    Article  ADS  Google Scholar 

  61. P. Jones, Phys. Rev. D 64, 084003 (2001)

    Article  ADS  Google Scholar 

  62. L. Herrera, A. Di Prisco, J. Ospino, J. Carot, Int. J. Mod. Phys. D 25, 1650036 (2016)

    Article  ADS  Google Scholar 

  63. W. Israel, J. Stewart, Phys. Lett. A 58, 213 (1976)

    Article  ADS  Google Scholar 

  64. W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979)

    Article  ADS  Google Scholar 

  65. D. Kazanas, D. Schramm, (1979)

  66. R.C. Tolman, Phys. Rev. 35, 904 (1930)

    Article  ADS  Google Scholar 

  67. L. Herrera, A. Di Prisco, J. Ospino arXiv preprint arXiv:1201.2862, (2012)

  68. E.N. Glass, J. Math. Phys. 16, 2361 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

The quantities appearing in Eqs. (61) and (62) are

$$\begin{aligned} \chi _7&=\frac{\chi _0}{f_R(r^2A^2B^2+G^2)}\left[ \Big (-2r^2B^2\Big )\frac{{\dot{A}}}{A}\right. \\&\quad +\frac{r^2A^2B^2+G^2}{A^2} \bigg (\frac{{\dot{3B}}}{B}-\frac{{\dot{C}}}{C}-\frac{\dot{f_R}}{f_R}\bigg )-2\frac{G^2}{A^2}\frac{{\dot{G}}}{G} -G\frac{A_{,\theta }}{A} \\&\quad +\left. \frac{r^2A^2B^2+G^2}{r^2A^2B^2}\bigg (\frac{G_{,\theta }}{G} -\frac{C_{,\theta }}{C}\bigg )G\right] -\frac{1}{f_R}\left[ \frac{\dot{\chi _0}}{A^2}+\frac{G}{r^2A^2B^2}\chi _{0,\theta }\right] \\&\quad +\frac{1}{B^2f_R}\left[ \chi '_1 +\chi _1\bigg \{\frac{f_R'}{R}+\frac{A'}{A}+\frac{(Br)'}{Br}\right. \\&\quad \left. +\frac{C'}{C}\bigg \}-\frac{{\dot{B}}}{B}\chi _4\right] +\frac{1}{rBf_R}\chi _2\bigg [2\bigg (\frac{A_{,\theta }}{A}+\frac{B_{,\theta }}{B}\bigg ) +\frac{C_{,\theta }}{C}\\&\quad -\frac{Gr^2B^2}{r^2A^2B^2+G^2}\bigg \{\frac{{\dot{A}}}{A}+\frac{{\dot{B}}}{B}-\frac{{\dot{G}}}{G} +\frac{G^2}{r^2B^2}\bigg (\frac{G_{,\theta }}{G}\bigg )\bigg \}\bigg ] \\&\quad +\frac{A}{r^2Bf_R}\left[ \chi _{2,\theta }+\frac{G}{B^2}\frac{A'}{A}\chi _3 +\frac{G^2}{r^2A^2B^2+G^2} \bigg \{\frac{{\dot{A}}}{A}-\frac{{\dot{G}}}{G}\right. \\&\quad \left. -\frac{A^2}{G}\frac{A_{,\theta }}{A}\bigg \} \chi _5\right] +\mu \frac{\dot{f_R}}{f_R^2}-\frac{1}{f_R}({\dot{R}}f_R-R\dot{f_R}) \\&\quad -\frac{A}{B}q_I\mu f'_{T^2} -\frac{A^2}{\sqrt{r^2A^2B^2+G^2}}\left( q_{II}\mu +7(-\mu +3P)^2\right) f_{T^2}\\&\quad +\frac{G(1-2\mu f_{T^2})}{f_R\sqrt{r^2A^2B^2+G^2}}\Pi _{KL} \left[ \frac{A}{B}\bigg (\frac{A'}{A}-\frac{G'}{2G}\bigg )\right] ,\\ \chi _8&=\frac{B}{A}q_I\mu \bigg \{\dot{f_{T^2}}-(1-2\mu f_{T^2})\frac{\dot{f_R}}{f_R}\bigg \}+\mu \dot{f_{T^2}}\bigg (P+\frac{\Pi _I}{3}\bigg )\\&\quad +\frac{\sqrt{r^2A^2B^2+G^2}}{r^2B^2}f_{T,\theta }\Pi _{KL}+\frac{1}{B}\bigg (\chi '_4 -\frac{f'_R}{f_R}\chi _4\bigg ) \\&\quad +\frac{r^2A^2B^2}{r^2A^2B^2+G^2}\left[ \chi _0\bigg (\frac{A'}{A} +\frac{G^2}{2r^2B^2}\frac{G'}{G}\bigg )\right. \\&\quad \left. +\frac{\chi _5}{C^2}\bigg (\frac{A'}{A}+\frac{(Br)'}{Br}\bigg )\right] +\frac{\chi _2}{r}\frac{r^2A^2B^2}{r^2A^2B^2+G^2}\left[ \frac{(Br)'}{Br}\right. \\&\quad +\left. \frac{G^2}{2r^2B^2}\frac{G'}{G}\right] +\frac{1}{r^2B^2}\mu f_{{T^2},\theta }\Pi _{KL}\sqrt{r^2A^2B^2+G^2}\\&\quad -\frac{A}{B}q_I\mu f'_{T^2}-7\frac{A}{\sqrt{r^2A^2B^2+G^2}}\mu f_{T^2},\\ \chi _9&=\frac{\mu }{r^2B^2}f'_{T^2}-\frac{f'_R}{f_R}(1-2\mu f_{T^2})\bigg (P+\frac{\Pi _I}{3}\bigg )\\&\quad +\frac{\mu }{A^3r^3rB^2}f_{T^2}+\frac{1}{r^2B^2} \frac{f_{R,\theta }}{f_R}\left\{ \frac{G}{r^2}q_I\mu f_{T^2}-\frac{(1-2\mu f_{T^2})}{\sqrt{r^2A^2B^2+G^2}}\right. \\&\quad \times \Pi _{KL}\bigg \}+ \frac{r^2A^2B^2}{r^2A^2B^2+G^2}\left[ \chi _1\bigg (\frac{{\dot{A}}}{A}+\frac{{\dot{2B}}}{B} +\frac{G^2}{2r^2B^2}\frac{{\dot{G}}}{G}\right. \\&\quad \left. +\frac{1}{rB}\bigg (\frac{A_{,\theta }}{A}-\frac{B_{,\theta }}{2B}\bigg ) +\frac{G^2}{r^2B^2C}\frac{G_{,\theta }}{G}\bigg )\right] +\frac{1}{r^2B}\chi _3\\&\left. \left[ \frac{B_{,\theta }}{B} +\frac{r^2A^2B^2}{r^2A^2B^2+G^2}\bigg \{ \frac{A_{,\theta }}{A}+\frac{G^2}{r^2B^2}\frac{G_{,\theta }}{G} +\frac{C_{,\theta }}{C}\right\} \right] \\&\quad +7\frac{A}{\sqrt{r^2A^2B^2+G^2}}(-\mu +3P)^2 f_{T^2}-\frac{1}{rB^2}q_{II,\theta }\mu f_{T^2}. \end{aligned}$$

The extra terms \(\zeta _i's\) appearing in Eqs. (42), (44), (45) and (48) are

$$\begin{aligned} \zeta _1&=\frac{\kappa }{8f_R}\epsilon _{\omega }^{\epsilon \varrho } \left[ (\nabla ^{\pi }\nabla _{\epsilon }f_R) \epsilon _{\lambda \pi \varrho }-(\nabla ^{\pi }\nabla _{\varrho }f_R)\epsilon _{\lambda \pi \epsilon }\right. \\&\quad \left. -(\nabla ^{\theta }\nabla _{\epsilon }f_R)\epsilon _{\theta \lambda \varrho } +(\nabla ^{\theta }\nabla _{\varrho }f_R)\epsilon _{\theta \lambda \epsilon }\right] ,\\ \zeta _2&=\nabla _{\omega }\nabla _{\lambda }f_R-\frac{3}{2}V_{\omega }V_{\lambda } (f-Rf_R)-\nabla _{\omega }\nabla _{\varrho }f_RV^{\varrho }V_{\lambda }\\&\quad +2V_{\omega }V_{\lambda }\Box f_R-(\nabla ^{\theta }\nabla _{\lambda }f_R)V_{\omega }V^{\theta } +g_{\omega \lambda } \\&\quad -(\nabla ^{\theta }\nabla _{\varrho }f_R)V_{\theta }V^{\varrho },\\ \zeta _3&=\nabla ^{\omega }\nabla _{\omega }f_R+\frac{3}{2}(f-Rf_R)\\&\quad -(\nabla ^{\omega }\nabla _{\varrho }f_R)V^{\varrho }V_{\omega } -2\Box f_R-(\nabla ^{\theta }\nabla _{\omega }f_R)V^{\omega }V_{\theta } +4(\nabla ^{\theta }\nabla _{\varrho }f_R)V_{\theta }V^{\varrho },\\ \zeta _4&=(\nabla ^{\varrho }\nabla _{\gamma }f_R)V^{\gamma }\epsilon _{\omega \varrho \lambda }. \end{aligned}$$

The effective terms of matter contents emerging in modified field as well as scalar equations are

$$\begin{aligned}&\mu ^{\text {eff}}=\frac{1}{f_R}\left[ \mu -\frac{1}{2}(f-Rf_R) -f_{T^2}\left( 2\mu ^2-7(-\mu +3P)^2\right) +\frac{\chi _0}{A^2}\right] ,\\&\Pi ^{\text {eff}}_{KL}=\frac{1}{f_R}(1-2\mu f_{T^2})\Pi _{KL}+\frac{1}{ABf_R\sqrt{r^2A^2B^2+G^2}}\left[ A^2\chi _3-G\chi _1\right] ,\\&\left( P+\frac{\Pi _I}{3}\right) ^{\text {eff}}=\frac{1}{f_R}\left[ (1-2\mu f_{T^2})\left( P+\frac{\Pi _I}{3}\right) -7f_{T^2}(-\mu +3P)^2\right] ,\\&\left( P+\frac{\Pi _{II}}{3}\right) ^{\text {eff}}\\&\quad =\frac{1}{f_R}\left[ \frac{G^2}{r^2A^2B^2+G^2}\left\{ -\frac{1}{2}(f-Rf_R)+7f_{T^2}(-\mu +3P)^2\right\} +(1-2\mu f_{T^2})\left( P+\frac{\Pi _{II}}{3}\right) \right] \\&\qquad -\frac{1}{f_R(r^2A^2B^2+G^2)}\left[ -3\frac{G^2}{A^2}\chi _0-2G\chi _2+A^2\chi _5\right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, Z., Bhatti, M.Z. & Farwa, U. Evolution of axially and reflection symmetric source in energy–momentum squared gravity. Eur. Phys. J. Plus 137, 49 (2022). https://doi.org/10.1140/epjp/s13360-021-02253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02253-7

Navigation