Skip to main content
Log in

Combined molecular dynamics–micromechanics methods to predict Young's modulus of fullerene-reinforced polymer composites

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a multiscale method is developed to predict Young's modulus of fullerene-reinforced polymer nanocomposites (FRPNs). Polymethyl methacrylate is chosen as the polymer matrix, while C60 fullerene is considered as the reinforcement. First, molecular dynamics (MD) simulations are conducted to calculate the Young modulus of nanocomposite unit cell with different weight fractions of fullerene. Then, a micromechanics model for a composite with multi-inclusion reinforcements is developed based on the extension of the Mori–Tanaka model and generalized Eshelby's results. Numerical results obtained from the proposed micromechanics model are compared with those calculated from the MD simulations, and good agreement is achieved. In addition, we propose an extension for the Halpin–Tsai model to predict Young's modulus of the FRPNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Zeng, A. Yu, G. Lu, Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33, 191–269 (2008)

    Article  Google Scholar 

  2. A.O. Okonkwo, P. Jagadale, J.E.G. Herrera, V.G. Hadjiev, J.M. Saldaña, A. Tagliaferro, F.C.R. Hernandez, High-toughness/low-friction ductile epoxy coatings reinforced with carbon nanostructures. Polym. Test. 47, 113–119 (2015)

    Article  Google Scholar 

  3. F. Moghaddam, E. Ghavanloo, S.A. Fazelzadeh, Effect of carbon nanotube geometries on mechanical properties of nanocomposite via nanoscale representative volume element. J. Solid Mech. 8, 568–577 (2016)

    Google Scholar 

  4. F. Zaccardi, M.G. Santonicola, S. Laurenzi, Role of interface bonding on the elastic properties of epoxy-based nanocomposites with carbon nanotubes using multiscale analysis. Compos. Struct. 255, 113050 (2021)

    Article  Google Scholar 

  5. F.B. Calleja, L. Giri, T. Asano, T. Mieno, A. Sakurai, M. Ohnuma, C. Sawatari, Structure and mechanical properties of polyethylene-fullerene composites. J. Mater. Sci. 31, 5153–5157 (1996)

    Article  ADS  Google Scholar 

  6. K. Zhogova, I. Davydov, V. Punin, B. Troitskii, G. Domvachiev, Investigation of fullerene C60 effect on properties of polymethylmethacrylate exposed to ionizing radiation. Eur. Polym. J. 41, 1260–1264 (2005)

    Article  Google Scholar 

  7. J.M. Kropka, K.W. Putz, V. Pryamitsyn, V. Ganesan, P.F. Green, Origin of dynamical properties in PMMA−C60 nanocomposites. Macromolecules 40, 5424–5432 (2007)

    Article  ADS  Google Scholar 

  8. T. Ogasawara, Y. Ishida, T. Kasai, Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Compos. Sci. Technol. 69, 2002–2007 (2009)

    Article  Google Scholar 

  9. M.A. Rafiee, F. Yavari, J. Rafiee, N. Koratkar, Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. J. Nanopart. Res. 13, 733–737 (2011)

    Article  ADS  Google Scholar 

  10. B. Ginzburg, S. Tuichiev, D. Rashidov, S.K. Tabarov, T. Sukhanova, M. Vylegzhanina, Effect of fullerene C60 on the structure and mechanical properties of thin films based on poly(methylmethacrylate) and other carbochain vinyl polymers: a technological aspect. Polym. Sci. Ser. A 54, 658–670 (2012)

    Article  Google Scholar 

  11. A. Adnan, C. Sun, H. Mahfuz, A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Compos. Sci. Technol. 67, 348–356 (2007)

    Article  Google Scholar 

  12. S.F. Ferdous, M.F. Sarker, A. Adnan, Role of nanoparticle dispersion and filler-matrix interface on the matrix dominated failure of rigid C60-PE nanocomposites: a molecular dynamics simulation study. Polymer 54, 2565–2576 (2013)

    Article  Google Scholar 

  13. F. Jeyranpour, G. Alahyarizadeh, A. Minuchehr, The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation—a comparative study. Polymer 88, 9–18 (2016)

    Article  Google Scholar 

  14. C.T. Lu, A. Weerasinghe, D. Maroudas, A. Ramasubramaniam, A comparison of the elastic properties of graphene-and fullerene-reinforced polymer composites: the role of filler morphology and size. Sci. Rep. 6, 31735 (2016)

    Article  ADS  Google Scholar 

  15. G.I. Giannopoulos, Linking MD and FEM to predict the mechanical behaviour of fullerene reinforced nylon-12. Composites B 161, 455–463 (2019)

    Article  Google Scholar 

  16. R. Izadi, E. Ghavanloo, A. Nayebi, Elastic properties of polymer composites reinforced with C60 fullerene and carbon onion: molecular dynamics simulation. Phys. B 574, 311636 (2019)

    Article  Google Scholar 

  17. G.I. Giannopoulos, S.K. Georgantzinos, N.K. Anifantis, Thermomechanical response of fullerene-reinforced polymers by coupling MD and FEM. Materials 13, 4132 (2020)

    Article  ADS  Google Scholar 

  18. B.J. Yang, H. Shin, H.K. Lee, H. Kim, A combined molecular dynamics/micromechanics/finite element approach for multiscale constitutive modeling of nanocomposites with interface effects. Appl. Phys. Lett. 103, 241903 (2013)

    Article  ADS  Google Scholar 

  19. V. Marcadon, D. Brown, E. Hervé, P. Melé, N.D. Albérola, A. Zaoui, Confrontation between molecular dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites. Comput. Mater. Sci. 79, 495–505 (2013)

    Article  Google Scholar 

  20. M.M. Shokrieh, M. Esmkhani, Z. Shokrieh, Z. Zhao, Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular dynamics–micromechanics method. Comput. Mater. Sci. 92, 444–450 (2014)

    Article  Google Scholar 

  21. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  ADS  Google Scholar 

  22. Y. Lin, D. Pan, J. Li, L. Zhang, X. Shao, Application of Berendsen barostat in dissipative particle dynamics for nonequilibrium dynamic simulation. J. Chem. Phys. 146, 124108 (2017)

    Article  ADS  Google Scholar 

  23. A. Karatrantos, N. Clarke, M. Kröger, Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale: a review. Polym. Rev. 56, 385–428 (2016)

    Article  Google Scholar 

  24. J.N. Coleman, M. Cadek, K.P. Ryan, A. Fonseca, J.B. Nagy, W.J. Blau, M.S. Ferreira, Reinforcement of polymers with carbon nanotubes. the role of an ordered polymer interfacial region. Experiment and modeling. Polymer 47, 8556–8561 (2006)

    Article  Google Scholar 

  25. M. Malagù, M. Goudarzi, A. Lyulin, E. Benvenuti, A. Simone, Diameter-dependent elastic properties of carbon nanotube-polymer composites: Emergence of size effects from atomistic-scale simulations. Composites B 131, 260–281 (2017)

    Article  Google Scholar 

  26. K. Weishaupt, H. Krbecek, M. Pietralla, H. Hochheimer, P. Mayr, Pressure dependence of the elastic constants of poly(methyl methacrylate). Polymer 36, 3267–3271 (1995)

    Article  Google Scholar 

  27. G. Giannopoulos, S. Georgantzinos, P. Kakavas, N. Anifantis, Radial stiffness and natural frequencies of fullerenes via a structural mechanics spring-based method. Fullerenes Nanotubes Carbon Nanostruct. 21, 248–257 (2013)

    Article  ADS  Google Scholar 

  28. M. Jamal-Omidi, M. ShayanMehr, R. Rafiee, A study on equivalent spherical structure of buckyball-C60 based on continuum shell model. Latin Am. J. Solids Struct. 13, 1016–1029 (2016)

    Article  Google Scholar 

  29. A. Nayebi, E. Ghavanloo, N. Hosseini, Young’s modulus estimation of fullerene nano-structure by using molecular mechanics and finite element method. Mod. Mech. Eng. 16, 41–48 (2016)

    Google Scholar 

  30. E. Ghavanloo, R. Izadi, A. Nayebi, Computational modeling of the effective Young’s modulus values of fullerene molecules: a combined molecular dynamics simulation and continuum shell model. J. Mol. Model. 24, 71 (2018)

    Article  Google Scholar 

  31. S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier, Amsterdam, 1993)

    MATH  Google Scholar 

  32. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A 241, 376–396 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Kiris, E. Inan, Eshelby tensors for a spherical inclusion in microstretch elastic fields. Int. J. Solids Struct. 43, 4720–4738 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Ma, G. Hu, Eshelby tensors for an ellipsoidal inclusion in a microstretch material. Int. J. Solids Struct. 44, 3049–3061 (2007)

    Article  MATH  Google Scholar 

  35. H.M. Ma, X.L. Gao, Eshelby’s tensors for plane strain and cylindrical inclusions based on a simplified strain gradient elasticity theory. Acta Mech. 211, 115–129 (2010)

    Article  MATH  Google Scholar 

  36. S. Trotta, F. Marmo, L. Rosati, Evaluation of the Eshelby tensor for polygonal inclusions. Composites B 115, 170–181 (2017)

    Article  Google Scholar 

  37. G.J. Yun, F.Y. Zhu, H.J. Lim, H. Choi, A damage plasticity constitutive model for wavy CNT nanocomposites by incremental Mori-Tanaka approach. Compos. Struct. 258, 113178 (2021)

    Article  Google Scholar 

  38. K. Tanaka, T. Mori, Note on volume integrals of the elastic field around an ellipsoidal inclusion. J. Elast. 2, 199–200 (1972)

    Article  Google Scholar 

  39. A. Jain, B.C. Jin, S. Nutt, Mean field homogenization methods for strand composites. Composites B 124, 31–39 (2017)

    Article  Google Scholar 

  40. J. Halpin, S. Tsai, Effects of environmental factors on composite materials. Air Force Materials Lab Wright-Patterson AFB OH (1969)

  41. R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  ADS  MATH  Google Scholar 

  42. J. Hermans, Elastic properties of fiber reinforced materials when fibers are aligned. Koninklijke Nederlandse Akademie Van Weteschappen-Proceedings Series B-Physical Sciences 70, 1 (1967)

    Google Scholar 

  43. B. Raju, S.R. Hiremath, D.R. Mahapatra, A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Compos. Struct. 204, 607–619 (2018)

    Article  Google Scholar 

  44. J. Amraei, J.E. Jam, B. Arab, R.D. Firouz-Abadi, Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites. Polym. Compos. 40, E1219–E1234 (2019)

    Article  Google Scholar 

  45. J.H. Affdl, J.L. Kardos, The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, R., Nayebi, A. & Ghavanloo, E. Combined molecular dynamics–micromechanics methods to predict Young's modulus of fullerene-reinforced polymer composites. Eur. Phys. J. Plus 136, 816 (2021). https://doi.org/10.1140/epjp/s13360-021-01819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01819-9

Navigation