Skip to main content
Log in

Band spectra of periodic hybrid \(\delta \text {-}\delta '\) structures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a detailed study of a generalised one-dimensional Kronig–Penney model using \(\delta \text {-}\delta '\) potentials. We analyse the band structure and the density of states in two situations. In the first case, we consider an infinite array formed by identical \(\delta \text {-}\delta '\) potentials standing at the linear lattice nodes. This case will be known throughout the paper as the one-species hybrid Dirac comb. We investigate the consequences of adding the \(\delta '\) interaction to the Dirac comb by comparing the band spectra and the density of states of pure Dirac-\(\delta \) combs and one-species hybrid Dirac combs. Secondly, we study the quantum system that arises when the periodic potential is the one obtained from the superposition of two one-species hybrid Dirac combs displaced one with respect to the other and with different couplings. The latter will be known as the two-species hybrid Dirac comb. One of the most remarkable results is the appearance of a curvature change in the band spectrum when the \(\delta '\) couplings are above a critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. It is of note that the critical values \(w_1=\pm 1\) occur when the parameter \(\lambda \) in (8) satisfies \(|\lambda |= \hbar ^2/m=7.62\, \mathrm{eV}{\AA }^2\) for the electron.

  2. This statement excludes the extreme situations in which one recovers the continuum spectrum of the free particle (\(w_1=\pm \infty \) or \(w_1=w_0=0\)).

  3. The behaviour of this system as a conductor or insulator depends on the number of charge carriers in the crystal that together with the band spectrum fixes the position of the Fermi level.

References

  1. R. de L. Kronig, W.G. Penney, Proc. R. Soc. Lond. Ser. A 130, 499 (1931)

    Article  ADS  Google Scholar 

  2. S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1971)

    Book  MATH  Google Scholar 

  3. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks/Cole, Boston, 1976)

    MATH  Google Scholar 

  4. G. Barton, Elements of Green’s Functions and Propagation (Oxford University Press, New York, 1989)

    MATH  Google Scholar 

  5. M. Bordag, J. Phys. A: Math. Theor. 53, 015003 (2020)

    Article  ADS  Google Scholar 

  6. H. Uncu, D. Tarhan, E. Demiralp, Müstecaplıog̃lu Ö E., Phys. Rev. A 76, 013618 (2007)

  7. F. Ferrari, V.G. Rostiashvili, T.A. Vilgis, Phys. Rev. E 71, 061802 (2005)

    Article  ADS  Google Scholar 

  8. I. Alvarado-Rodríguez, P. Halevi, J.J. Sánchez-Mondragón, Phys. Rev. E 59, 3624 (1999)

    Article  ADS  Google Scholar 

  9. J.R. Zurita-Sánchez, P. Halevi, Phys. Rev. E 61, 5802 (2000)

    Article  ADS  Google Scholar 

  10. M.-C. Lin, R.-F. Jao, Phys. Rev. E 74, 046613 (2006)

    Article  ADS  Google Scholar 

  11. J.I. Díaz, J. Negro, L.M. Nieto, O. Rosas-Ortiz, J. Phys. A: Math. Gen. 32, 8447 (1999)

    Article  ADS  Google Scholar 

  12. J.J. Álvarez, M. Gadella, F.J.H. Heras, L.M. Nieto, Phys. Lett. A 373, 4022 (2009)

    Article  ADS  Google Scholar 

  13. J. Negro, L.M. Nieto, O. Rosas-Ortiz, Foundations of Quantum Physics, ed. by R. Blanco et al. (CIEMAT/RSEF, Madrid, 2002) p. 259–270

  14. M. Gadella, F.J.H. Heras, J. Negro, L.M. Nieto, J. Phys. A: Math. Theor. 42, 465207 (2009)

    Article  ADS  Google Scholar 

  15. J.M. Munoz-Castaneda, J. Mateos-Guilarte, A. Moreno-Mosquera, Eur. Phys. J. Plus 130(3), 48 (2015)

    Article  Google Scholar 

  16. R.W. Jackiw, Diverse Topics in Theoretical Physics (World Scientific, Singapore, 1995). Section I.3

    Book  MATH  Google Scholar 

  17. M. Bordag, J.M. Muñoz-Castañda, Phys. Rev. D 91, 065027 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Bordag, I.G. Pirozhenko, Phys. Rev. D 95, 056017 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Fucci, K. Kirsten, J.M. Muñoz-Castañda, arXiv:1906.08486 [math-ph]

  20. Y.N. Demkov, V.N. Ostrovskii, Zero-Range Potentials and their Application in Atomic Physics (Plenum Press, New York, 1988)

    Book  Google Scholar 

  21. S. Albeverio, F. Gesztesy, R. Hoeg-Krohn, H. Holden, Solvable Models in Quantum Mechanics (AMS Chelsea, 2nd Edition with an appendix by Pavel Exner, 2004)

  22. S. Albevero, P. Kurasov, Singular Perturbations of Differential Operators Cambridge Lecture Note Series, vol. 271 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  23. F.A. Berezin, L.D. Faddeev, Sov. Math. Dokl. 2, 372 (1961)

    Google Scholar 

  24. P. Kurasov, J. Math. Anal. App. 201, 297 (1996)

    Article  Google Scholar 

  25. V.L. Kulinskii, D.Y. Panchenko, Phys. B: Condens. Matter 472, 78 (2015)

    Article  ADS  Google Scholar 

  26. V.L. Kulinskii, D.Y. Panchenko, Ann. Phys. 404, 47 (2019)

    Article  ADS  Google Scholar 

  27. A.V. Zolotaryuk, Phys. E Low Dimens. Syst. Nanostruct. 103, 81 (2018)

    Article  ADS  Google Scholar 

  28. A.V. Zolotaryuk, Ann. Phys. 396, 479 (2018)

    Article  ADS  Google Scholar 

  29. A.V. Zolotaryuk, G.P. Tsironis, Y. Zolotaryuk, Front. Phys. 7, 87 (2019)

    Article  Google Scholar 

  30. L.M. Nieto, M. Gadella, Guilarte J. Mateos, J.M. Muñoz-Castañeda, C. Romaniega, J. Phys. Conf. Ser. 839, 012007 (2017). UNSP

    Article  Google Scholar 

  31. M.A. Lee, J.T. Lunardi, L. Manzoni, E.A. Nyquist, Front. Phys. 4, 10 (2016)

    Article  Google Scholar 

  32. J.M. Cerveró, A. Rodríguez, Eur. Phys. J. B 30, 239 (2002)

    Article  ADS  Google Scholar 

  33. F. Erman, M. Gadella, H. Uncu, Phys. Rev. D 95, 045004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. F. Erman, M. Gadella, S. Tunali, H. Uncu, Eur. Phys. J. Plus 132, 352 (2017)

    Article  Google Scholar 

  35. M. Gadella, J.M. Mateos-Guilarte, J.M. Muñoz-Castañeda, L.M. Nieto, J. Phys. A: Math. Theor. 49, 015204 (2016)

    Article  ADS  Google Scholar 

  36. V. Caudrelier, N. Crampe, Nucl. Phys. B 738, 351 (2006)

    Article  ADS  Google Scholar 

  37. J.M. Munoz-Castaneda, L.M. Nieto, C. Romaniega, Ann. Phys. 400, 246 (2019)

    Article  ADS  Google Scholar 

  38. M.L. Glasser, Front. Phys. 7, 7 (2019)

    Article  Google Scholar 

  39. G. Dell’Antonio, Front. Phys. 7, 40 (2019)

    Article  Google Scholar 

  40. Y. Golovaty, Integral Equ. Oper. Theory 90(5), 57 (2018). UNSP

    Article  Google Scholar 

  41. Y. Golovaty, Front. Phys. 7, 70 (2019)

    Article  Google Scholar 

  42. S. Albeverio, S. Fassari, M. Gadella, L.M. Nieto, F. Rinaldi, Front. Phys. 7, 102 (2019)

    Article  Google Scholar 

  43. F. Erman, O.T. Turgut, Front. Phys. 7, 69 (2019)

    Article  Google Scholar 

  44. T. Sendev, I. Petreska, E.K. Lenzi, Comput. Math. Appl. 78, 1695 (2019)

    Article  MathSciNet  Google Scholar 

  45. V.L. Kulinskii, D.Y. Panchenko, Front. Phys. 7, 44 (2019)

    Article  Google Scholar 

  46. V.L. Rabinovich, V. Barrera-Figueroa, L. Olivera-Ramirez, Front. Phys. 7, 57 (2019)

    Article  Google Scholar 

  47. M. Calçada, J.T. Lunardi, L.A. Manzoni, W. Monetro, M. Pereira, Front. Phys. 7, 101 (2019)

    Article  Google Scholar 

  48. J. Mateos-Guilarte, J.M. Muñoz-Castañeda, I. Pirozhenko, L. Santamaría-Sanz, Front. Phys. 7, 109 (2019)

    Article  Google Scholar 

  49. P. Seba, Rep. Math. Phys. 24, 111 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  50. S. Albeverio, S. Fassari, F. Rinaldi, J. Phys. A: Math. Theor. 46, 385305 (2013)

    Article  ADS  Google Scholar 

  51. G. Barton, D. Waxman, Wave Equations with Point-Support Potentials Having Dimensionless Strength Parameters. Sussex Report (1993) (unpublished). https://cds.cern.ch/record/256020

  52. M. Gadella, J. Negro, L.M. Nieto, Phys. Lett. A 373, 1310 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  53. J.M. Munoz-Castaneda, J. Mateos-Guilarte, A. Moreno-Mosquera, Phys. Rev. D 87, 105020 (2013)

    Article  ADS  Google Scholar 

  54. P. Kurasov, J. Larson, J. Math. Anal. Appl. 266, 127 (2002)

    Article  MathSciNet  Google Scholar 

  55. F. Gesztesy, H. Holden, J. Phys. A 20, 5157 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  56. S. Fassari, M. Gadella, M.L. Glasser, L.M. Nieto, Ann. Phys. 389, 48 (2018)

    Article  ADS  Google Scholar 

  57. S. Fassari, F. Rinaldi, Rep. Math. Phys. 64(3), 367 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  58. F. Erman, M. Gadella, H. Uncu, Front. Phys. 8, 65 (2020)

    Article  Google Scholar 

  59. J.M. Muñoz-Castañeda, J.M. Mateos-Guilarte, Phys. Rev. D 91, 025028 (2015)

    Article  ADS  Google Scholar 

  60. M. Bordag, J.M. Muñoz-Castañeda, L. Santamaría-Sanz, Front. Phys. 7, 38 (2019)

    Article  Google Scholar 

  61. J.M. Cerveró, A. Rodríguez, Eur. Phys. J. B 32, 537 (2003)

    Article  ADS  Google Scholar 

  62. J.M. Cerveró, A. Rodríguez, Phys. Rev. A 70, 052705 (2004)

    Article  ADS  Google Scholar 

  63. J.M. Cerveró, A. Rodríguez, Eur. Phys. J. B 43, 543 (2005)

    Article  ADS  Google Scholar 

  64. J.M. Cerveró, Phys. Lett. A. 317, 26 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  65. J.M. Cerveró, A. Rodríguez, J. Phys. A: Math. Gen. 37, 10167 (2004)

    Article  ADS  Google Scholar 

  66. M. Bordag, J.M. Muñoz-Castañeda, L. Santamaría-Sanz, Eur. Phys. J. C 80, 221 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Junta de Castilla y León and FEDER projects (BU229P18 and VA137G18). L.S.S. is grateful to the Spanish Government for the FPU-fellowships programme (FPU18/00957). The authors acknowledge the fruitful discussions with M. Bordag, K. Kirsten, G. Fucci and C. Romaniega.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Nieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadella, M., Guilarte, J.M.M., Muñoz-Castañeda, J.M. et al. Band spectra of periodic hybrid \(\delta \text {-}\delta '\) structures. Eur. Phys. J. Plus 135, 786 (2020). https://doi.org/10.1140/epjp/s13360-020-00818-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00818-6

Navigation