Skip to main content
Log in

Machine learning approaches for estimation of compressive strength of concrete

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Estimation of compressive strength of rubberized concrete is important for engineering safety. In this study, measured data (the compressive strength of rubberized concrete and its impacting factors) were collected by literature review (457 samples). In order to accurately predict the compressive strength of rubberized concrete, four machine learning models [artificial neural network (ANN), k-nearest neighbor (KNN), regression trees (RT), and random forests (RF)] were developed and compared to estimate the compressive strength of rubberized concrete, and the modeling results were compared with two traditional expressions. The model performance was evaluated using three performance indicators: the Nash–Sutcliffe efficiency coefficient (NSC), the root-mean-squared error (RMSE), and the mean absolute error (MAE). The results showed that the RT model performs the best, followed by the ANN and RF in the model training phase. In the model testing phase, the ANN model performs the best, followed by the RT, RF, and KNN. The overall results indicated that the ANN model performs the best, followed by RT and RF, and the KNN model performs the worst. The ANN and RT models outperformed the two traditional expressions. The tree-based models (RT and RF) and KNN model may not be applicative to estimate the compressive strength of rubberized concrete due to the generally poor performances in the model testing phase compared with that in the model training phase. The results showed that the traditional ANN model is sufficient for the accurate estimation of the compressive strength of rubberized concrete when the model is properly trained. The results in the present research can provide reference for the prediction of the compressive strength of rubberized concrete, which will benefit engineering management and safety as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Ismail, K.W. Hoe, M. Ramli, Procedia Soc. Behav. Sci. (2013). https://doi.org/10.1016/j.sbspro.2013.07.183

    Article  Google Scholar 

  2. M. Sienkiewicz, H. Janik, K. Borzędowska-Labuda, J. Kucińska-Lipka, J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2017.01.121

    Article  Google Scholar 

  3. I. Šandrk Nukić, I. Miličević, Interdiscip. Descr. Complex Syst. (2019). https://doi.org/10.7906/indecs.17.2.9

    Article  Google Scholar 

  4. S.T. Yildirim, N.P. Duygun, Mechanical and physical performance of concrete including waste electrical cable rubber, in IOP Conference Series: Materials Science and Engineering. https://iopscience.iop.org/article/10.1088/1757-899X/245/2/022054/meta. Accessed 10 June 2020

  5. B.S. Thomas, R.C. Gupta, Renew. Sustain. Energy Rev. (2016). https://doi.org/10.1016/j.rser.2015.10.092

    Article  Google Scholar 

  6. A.L. Puşcǎ, S. Bobancu, A. Dutǎ, Mechanical properties of rubber: an overview. Bull. Transilv. Univ. Brasov. Eng. Sci. Ser. I 3, 107 (2010)

    Google Scholar 

  7. P.T. Williams, Pyrolysis of waste tyres: a review (2013). https://doi.org/10.1016/j.wasman.2013.05.003

    Article  Google Scholar 

  8. D.L. Presti, Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Constr. Build. Mater. 49, 863–881 (2013). https://doi.org/10.1016/j.conbuildmat.2013.09.007

    Article  Google Scholar 

  9. X. Shu, B. Huang, Recycling of waste tire rubber in asphalt and Portland cement concrete: an overview. Constr. Build. Mater. (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.027

    Article  Google Scholar 

  10. R. Siddique, T.R. Naik, Properties of concrete containing scrap-tire rubber: an overview. Waste Manage. (2004). https://doi.org/10.1016/j.wasman.2004.01.006

    Article  Google Scholar 

  11. K.B. Najim, M.R. Hall, A review of the fresh/hardened properties and applications for plain-(PRC) and self-compacting rubberized concrete (SCRC). Constr. Build. Mater. (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.056

    Article  Google Scholar 

  12. A.M. Rashad, A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. Int. J. Sustain. Built Environ. (2016). https://doi.org/10.1016/j.ijsbe.2015.11.003

    Article  Google Scholar 

  13. R. Roychand, R. Gravina, Y. Yan Zhuge, X. Ma, O. Youssf, J.E. Mills, A comprehensive review on the mechanical properties of waste tire rubber concrete. Constr. Build. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2019.117651

    Article  Google Scholar 

  14. M.M. Al-Tayeb, B.A. Bakar, H.M. Akil, H. Ismail, Exp. Mech. (2013). https://doi.org/10.1007/s11340-012-9651-z

    Article  Google Scholar 

  15. W. Wu, G.C. Dandy, H.R. Maier, Environ. Model Softw. (2014). https://doi.org/10.1016/j.envsoft.2013.12.016

    Article  Google Scholar 

  16. R. Bušić, I. Miličević, T.K. Šipoš, K. Strukar, Recycled rubber as an aggregate replacement in self-compacting concrete—literature overview. Materials (2018). https://doi.org/10.3390/ma11091729

    Article  Google Scholar 

  17. N.N. Hilal, Hardened properties of self-compacting concrete with different crumb rubber size and content. Int. J. Sustain. Built Environ. (2017). https://doi.org/10.1016/j.ijsbe.2017.03.001

    Article  Google Scholar 

  18. Z.K. Khatib, F.M. Bayomy, J. Mater. Civ. Eng. (1999). https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)

    Article  Google Scholar 

  19. A.M. Ghaly, J.D. Cahill IV, Can. J. Civ. Eng. (2005). https://doi.org/10.1139/l05-063

    Article  Google Scholar 

  20. M.F.M. Zain, S.M. Abd, K. Sopian, M. Jamil, A.I. Che-Ani, Mathematical regression model for the prediction of concrete strength, in Proceedings of the Tenth WSEAS International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems. https://dl.acm.org/doi/10.5555/1562334.1562406. Accessed 15 May 2020

  21. O. Youssf, M.A. ElGawady, J.E. Mills, X. Ma, An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes. Constr. Build. Mater. (2014). https://doi.org/10.1016/j.conbuildmat.2013.12.007

    Article  Google Scholar 

  22. M. Hadzima-Nyarko, I. Miličević, Equations for prediction of rubberized concrete compressive strength: a literature review, in New Materials in Civil Engineering, 1st Edn, eds. Pijush Samui, P., Dookie Kim, D., Iyer, N., Chaudhary, S. (Butterworth-Heinemann, 2020). https://www.elsevier.com/books/new-materials-in-civil-engineering/samui/978-0-12-818961-0. Accessed 24 July 2020

  23. J.S. Chou, C.K. Chiu, M. Farfoura, I. Al-Taharwa, J. Comput. Civ. Eng. (2011). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088

    Article  Google Scholar 

  24. J.S. Chou, C.F. Tsai, A.D. Pham, Y.H. Lu, Constr. Build. Mater. (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.054

    Article  Google Scholar 

  25. M. Nikoo, F. Torabian Moghadam, Ł. Sadowski, Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/849126

    Article  Google Scholar 

  26. A.M.N. El-Khoja, A.F. Ashour, J. Abdalhmid, X. Dai, A. Khan, Int. J. Struct. Constr. Eng. (2018). https://doi.org/10.5281/zenodo.2021549

    Article  Google Scholar 

  27. M. Hadzima-Nyarko, E.K. Nyarko, N. Ademović, I. Miličević, T. Kalman Šipoš, Materials (2019). https://doi.org/10.3390/ma12040561

    Article  Google Scholar 

  28. Ł. Sadowski, M. Piechówka-Mielnik, T. Widziszowski, A. Gardynik, S. Mackiewicz, J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2018.12.059

    Article  Google Scholar 

  29. H. Naderpour, M. Mirrashid, J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.121886

    Article  Google Scholar 

  30. B. Ahmadi-Nedushan, Eng. Appl. Artif. Intell. (2012). https://doi.org/10.1016/j.engappai.2012.01.012

    Article  Google Scholar 

  31. P. Chopra, R.K. Sharma, M. Kumar, T. Chopra, Adv. Civ. Eng. (2018). https://doi.org/10.1155/2018/5481705

    Article  Google Scholar 

  32. N.N. Eldin, A.B. Senouci, Rubber-tire particles as concrete aggregate. J. Mater. Civ. Eng. (1993). https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)

    Article  Google Scholar 

  33. L. Lavagna, R. Nisticò, M. Sarasso, M. Pavese, An analytical mini-review on the compression strength of rubberized concrete as a function of the amount of recycled tires crumb rubber. Materials (2020). https://doi.org/10.3390/ma13051234

    Article  Google Scholar 

  34. E. Guneyisi, M. Gesoglu, T. Ozturan, Properties of rubberized concretes containing silica fume. Cem. Concr. Res. (2004). https://doi.org/10.1016/j.cemconres.2004.04.005

    Article  Google Scholar 

  35. M. Gesoğlu, E. Güneyisi, Strength development and chloride penetration in rubberized concretes with and without silica fume. Mater. Struct. (2007). https://doi.org/10.1617/s11527-007-9279-0

    Article  Google Scholar 

  36. N.J. Azmi, B.S. Mohammed, H.M.A. Al-Mattarneh, Engineering properties of concrete containing recycled tire rubber, International Conference on Construction and Building Technology, ICCBT 2008, 16–20 June 2008, Kuala Lumpur, Malasia (2008), pp. 373–382

  37. A. Grinys, H. Sivilevičius, M. Daukšys, Tyre rubber additive effect on concrete mixture strength. J. Civ. Eng. Manag. (2012). https://doi.org/10.3846/13923730.2012.693536

    Article  Google Scholar 

  38. O. Onuaguluchi, D.K. Panesar, Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. J. Clean. Prod. (2014). https://doi.org/10.1016/j.jclepro.2014.06.068

    Article  Google Scholar 

  39. Z. Grdić, G. Topličić-Ćurčić, N. Ristić, D. Grdić, P. Mitković, Hydro-abrasive resistance and mechanical properties of rubberized concrete. Građevinar (2014). https://doi.org/10.14256/JCE.910.2013

    Article  Google Scholar 

  40. H. Liu, X. Wang, Y. Jiao, T. Sha, Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials (2016). https://doi.org/10.3390/ma9030172

    Article  Google Scholar 

  41. R.B. Murugan, E.R. Sai, C. Natarajan, S. Chen, Flexural fatigue performance and mechanical properties of rubberized concrete. Građevinar (2017). https://doi.org/10.14256/JCE.1427.2015

    Article  Google Scholar 

  42. H.H. Toutanji, The use of rubber tire particles in concrete to replace mineral aggregates. Cem. Concr. Compos. (1996). https://doi.org/10.1016/0958-9465(95)00010-0

    Article  Google Scholar 

  43. M.M. Taha, A.S. El-Dieb, M.A. AbdEl-Wahab, M.E. Abdel-Hameed, Mechanical, fracture, and microstructural investigations of rubber concrete. J. Mater. Civ. Eng. 20(10), 640–649 (2008). https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640)

    Article  Google Scholar 

  44. El-Sherbini, Y.; Abdel-Gawad, A.K.; Shalaby, A.; El-Gammal, A, Compressive strength of concrete utilizing waste tire rubber. J. Emerg. Trends Eng. Appl. Sci. 1(1), 96–99 (2010)

    Google Scholar 

  45. M.K. Batayneh, I. Marie, I. Asi, Promoting the use of crumb rubber concrete in developing countries. Waste Manag (2008). https://doi.org/10.1016/j.wasman.2007.09.035

    Article  Google Scholar 

  46. M.A. Aiello, F. Leuzzi, Waste tyre rubberized concrete: properties at fresh and hardened state. Waste Manag (2010). https://doi.org/10.1016/j.wasman.2010.02.005

    Article  Google Scholar 

  47. A. Fiore, G.C. Marano, C. Marti, M. Molfetta, On the fresh/hardened properties of cement composites incorporating rubber particles from recycled tires. Adv. Civ. Eng. (2014). https://doi.org/10.1155/2014/876158

    Article  Google Scholar 

  48. A.M. Almaleeh, S.M. Shitote, T. Nyomboi, Use of waste rubber tires as aggregate in concrete. J. Civ. Eng. Constr. Technol. (2017). https://doi.org/10.5897/JCECT2016.0421

    Article  Google Scholar 

  49. C. Albano, N. Camacho, J. Reyes, J.L. Feliu, M. Hernández, Influence of scrap rubber addition to Portland I concrete composites: destructive and non-destructive testing. Compos. Struct. (2005). https://doi.org/10.1016/j.compstruct.2005.09.037

    Article  Google Scholar 

  50. H.A. Toutanji, Cem. Concr. Compos. (1996). https://doi.org/10.1016/0958-9465(95)00010-0

    Article  Google Scholar 

  51. E. Güneyisi, M. Gesoğlu, T. Özturan, Cem. Concr. Res. (2004). https://doi.org/10.1016/j.cemconres.2004.04.005

    Article  Google Scholar 

  52. T. Rajaee, S.A. Mirbagheri, M. Zounemat-Kermani, V. Nourani, Sci. Total Environ. (2009). https://doi.org/10.1016/j.scitotenv.2009.05.016

    Article  Google Scholar 

  53. S. Zhu, S. Heddam, E.K. Nyarko, M. Hadzima-Nyarko, S. Piccolroaz, S. Wu, Environ. Sci. Pollut. Res. (2019). https://doi.org/10.1007/s11356-018-3650-2

    Article  Google Scholar 

  54. S. Zhu, B. Hrnjica, M. Ptak, A. Choiński, B. Sivakumar, J. Hydrol. (2020). https://doi.org/10.1016/j.jhydrol.2020.124819

    Article  Google Scholar 

  55. R. Graf, S. Zhu, B. Sivakumar, J. Hydrol. (2019). https://doi.org/10.1016/j.jhydrol.2019.124115

    Article  Google Scholar 

  56. M. Sharif, D.H. Burn, J. Hydrol. Eng. (2007). https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(42)

    Article  Google Scholar 

  57. A. Nemes, R.T. Roberts, W.J. Rawls, Y.A. Pachepsky, M.T. Van Genuchten, Environ. Model Softw. (2008). https://doi.org/10.1016/j.envsoft.2007.05.018

    Article  Google Scholar 

  58. M. Timur Cihan, Adv. Civ. Eng. (2019). https://doi.org/10.1155/2019/3069046

    Article  Google Scholar 

  59. M. Akin, C. Hand, E. Eyduran, B.M. Reed, Plant Cell Tissue Organ Cult. (2018). https://doi.org/10.1007/s11240-017-1353-x

    Article  Google Scholar 

  60. J. Mahjoobi, A. Etemad-Shahidi, Appl. Ocean Res. (2008). https://doi.org/10.1016/j.apor.2008.11.001

    Article  Google Scholar 

  61. C.E. Lennert-Cody, M. Minami, P.K. Tomlinson, M.N. Maunder, Fish. Res. (2010). https://doi.org/10.1016/j.fishres.2009.11.014

    Article  Google Scholar 

  62. L. Breiman, Mach. Learn. (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  63. A.M. Prasad, L.R. Iverson, A. Liaw, Ecosystems (2006). https://doi.org/10.1007/s10021-005-0054-1

    Article  Google Scholar 

  64. R. Genuer, J.M. Poggi, C. Tuleau-Malot, Pattern Recogn. Lett. (2010). https://doi.org/10.1016/j.patrec.2010.03.014

    Article  Google Scholar 

  65. A. Lahouar, J.B.H. Slama, Renew. Energy (2017). https://doi.org/10.1016/j.renene.2017.03.064

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support by Croatian Science Foundation under the project UIP-2017-05-7113 Development of Reinforced Concrete Elements and Systems with Waste Tire Powder—ReCoTiP and China Postdoctoral Science Foundation (2018M640499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senlin Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadzima-Nyarko, M., Nyarko, E.K., Lu, H. et al. Machine learning approaches for estimation of compressive strength of concrete. Eur. Phys. J. Plus 135, 682 (2020). https://doi.org/10.1140/epjp/s13360-020-00703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00703-2

Navigation