Skip to main content
Log in

An useful procedure for finding exact solutions to new form of (2 + 1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Existence of trigonometric and hyperbolic function solutions together yields complexiton solutions. This condition is the nature of complexitons, makes the process harder and provides them a different type of wave speed. Modified double sub-equation method is a useful and practical tool to obtain complexiton solutions of nonlinear partial differential equations. Employment of two wave transformations makes modified double sub-equation method more general than methods that use one wave transformation. These two wave transformations also provide trigonometric function solutions or hyperbolic function solutions. In this study, application of modified double sub-equation method for new form of (2 + 1)-dimensional BKP equation is given. Wave propagations of some resulting solutions are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E.J. Parkes, B.R. Duffy, an automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996)

    Article  ADS  Google Scholar 

  2. A. Bekir, Ö. Ünsal, Periodic and solitary wave solutions of coupled nonlinear wave equations using the first integral method. Phys. Scr. 85, 065003 (2012)

    Article  ADS  Google Scholar 

  3. A. Bekir, Ö. Güner, Ö. Ünsal, The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10, 021020–1 (2015)

    Article  Google Scholar 

  4. W.X. Ma, Travelling wave solutions to a seventh order generalized KdV equation. Phys. Lett. A 180, 221–224 (1993)

    Article  MathSciNet  Google Scholar 

  5. Y. Zhou, M.L. Wang, Y.M. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Demiray, Ö. Ünsal, A. Bekir, New exact solutions for boussinesq type equations by Using (G’/G; 1/G) and (1/G’)-expansion methods. Acta Phys. Pol. A 125, 1093–1098 (2014)

    Article  ADS  Google Scholar 

  7. A.M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations. Appl. Math. Comput. 188, 1467–1475 (2007)

    MathSciNet  MATH  Google Scholar 

  8. B. Fuchssteiner, S. Carillo, A new class of nonlinear partial differential equations solvable by quadratures, in Anal. Geometry, ed. by B. Fuchssteiner, W.A.J. Luxemburg (BJ Wissenschaftsverlag, Mannheim, 1992), pp. 73–85

    Google Scholar 

  9. W.X. Ma, B. Fuchssteiner, Explicit and exact solutions to a Kolmogorov–Petrovshii–Piskunov equation. Int. J. Non-linear Mech. 31, 329–338 (1996)

    Article  Google Scholar 

  10. E.G. Fan, Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. A.M. Wazwaz, New solitary wave solutions to the Kuramoto–Sivashinsky and the Kawahara equations. Appl. Math. Comput. 182, 1642–1650 (2006)

    MathSciNet  MATH  Google Scholar 

  12. M.L. Wang, Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 199, 169–172 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. H.N. Xu, W.Y. Ruan, Y. Zhang, X. Lü, Multi-exponential wave solutions to two extended Jimbo–Miwa equations and the resonance behavior. Appl. Math. Lett. 99, 105976 (2020)

    Article  MathSciNet  Google Scholar 

  14. S.J. Chen, Y.H. Yin, W.X. Ma, X. Lü, Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation. Anal. Math. Phys. 9, 2329–2344 (2019)

    Article  MathSciNet  Google Scholar 

  15. S.J. Chen, W.X. Ma, X. Lü, Bäcklund transformation, exact solutions and interaction behaviour of the (3 + 1)-dimensional Hirota–Satsuma–Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    Article  MathSciNet  Google Scholar 

  16. Y.F. Hua, B.L. Guo, W.X. Ma, X. Lü, Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    Article  MathSciNet  Google Scholar 

  17. X. Lü, W.X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  Google Scholar 

  18. Y.H. Yin, W.X. Ma, J.G. Liu, X. Lü, Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76, 1275–1283 (2018)

    Article  MathSciNet  Google Scholar 

  19. W.X. Ma, Complexiton solutions to the Kortweg-de Vries equation. Phys. Lett. A 301, 35–44 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. W.X. Ma, Complexiton solutions to integrable equations. Nonlinear Anal. 63, e2461–e2471 (2005)

    Article  Google Scholar 

  21. H.T. Chen, S.H. Yang, W.X. Ma, Double sub-equation method for complexiton solutions of nonlinear partial differential equations. Appl. Math. Comput. 219, 4775–4781 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Y. Chen, Q. Wang, Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham–Broer–Kaup equation. Phys. Lett. A 347, 215–227 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. W. Li, H. Zhang, A generalized sub-equatons rational expansion method for nonlinear evolution equations. Commun. Nonlinear. Sci. Numer. Simul. 15, 1454–1461 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.M. Wazwaz, Zhaqilao, Nonsingular complexiton solutions for two higher-dimensional fifth order nonlinear integrable equations. Phys. Scr. 88, 025001 (2013)

    Article  ADS  Google Scholar 

  25. A.M. Wazwaz, New solutions for two integrable cases of a generalized fifth-order nonlinear equation. Mod. Phys. Lett. B 29(14), 1550065 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ö. Ünsal, A. Bekir, F. Taşcan, M.N. Özer, Complexiton solutions for two nonlinear partial differential equations via modification of simplified Hirota method. Waves Random Complex Media 27(1), 117–128 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ö. Ünsal, Complexiton solutions for (3+1) dimensional KdV-type equation. Comput. Math. Appl. 75, 2466–2472 (2018)

    Article  MathSciNet  Google Scholar 

  28. W. Li, H. Zhang, A new generalized compound Riccati equations rational expansion method to construct many new exact complexiton solutions of nonlinear evolution equations with symbolic computation. Chaos Solitons Fractals 39, 2369–2377 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Zhang, W.X. Ma, Extended transformed rational function method and applications to complexiton solutions. Appl. Math. Comput. 230, 509–515 (2014)

    MathSciNet  MATH  Google Scholar 

  30. M.B. Hossen, H.O. Roshid, M.Z. Ali, Modified double sub-equation method for finding complexiton solutions to the (1+1) dimensional nonlinear evolution equations. Int. J. Appl. Comput. Math. 3, 679–697 (2017)

    Article  MathSciNet  Google Scholar 

  31. L. Kaur, A.M. Wazwaz, Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation. Int. J. Numer. Methods Heat Fluid Flow 29, 569–579 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Ünsal.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünsal, Ö., Sakartepe, Z. An useful procedure for finding exact solutions to new form of (2 + 1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation. Eur. Phys. J. Plus 135, 669 (2020). https://doi.org/10.1140/epjp/s13360-020-00687-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00687-z

Navigation