Skip to main content
Log in

Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This is the first research on the frequency analysis of a graphene nanoplatelet composite (GPLRC) microdisk in the framework of a numerical-based generalized differential quadrature method. The stresses and strains are obtained using the higher-order shear deformable theory. Rule of mixture is employed to obtain varying mass density, thermal expansion, and Poisson’s ratio, while module of elasticity is computed by modified Halpin–Tsai model. Governing equations and boundary conditions of the GPLRC microdisk covered with piezoelectric layer are obtained by implementing Hamilton’s principle. Regarding perfect bonding between the piezoelectric layer and core, the compatibility conditions are derived. In addition, due to the existence of piezoelectric layer, Maxwell’s equation is derived. The results show that outer-to-inner ratio of radius (\( R_{\text{o}} /R_{\text{i}} \)), ratios of length scale and nonlocal to thickness (l/h and \( \mu \)/h), ratio of piezoelectric to core thickness (hp/h), applied voltage, and GPL weight fraction (gGPL) have significant influence on the frequency characteristics of the GPLRC microdisk. Another important consequence is that in addition to the nonlinear indirect effects of applied voltage on the natural frequency of the GPLRC microdisk covered with piezoelectric for each specific value of \( R_{\text{o}} /R_{\text{i}} \), the impact of the \( R_{\text{o}} /R_{\text{i}} \) on the natural frequency is indirect. A useful suggestion of this research is that, for designing the GPLRC circular microplate at the low value of the \( R_{\text{o}} /R_{\text{i}} \) should be more attention to the gGPL and \( R_{\text{o}} /R_{\text{i}} \), simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Habibi, R. Hashemi, A. Ghazanfari, R. Naghdabadi, A. Assempour, Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 232, 625–636 (2018)

    Google Scholar 

  2. M. Habibi, R. Hashemi, M.F. Tafti, A. Assempour, Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J. Manuf. Process. 31, 310–323 (2018)

    Google Scholar 

  3. M. Habibi, R. Hashemi, E. Sadeghi, A. Fazaeli, A. Ghazanfari, H. Lashini, Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J. Mater. Eng. Perform. 25, 382–389 (2016)

    Google Scholar 

  4. M. Habibi, A. Ghazanfari, A. Assempour, R. Naghdabadi, R. Hashemi, Determination of forming limit diagram using two modified finite element models. Mech. Eng.48 (2017)

  5. S. Hosseini, M. Habibi, A. Assempour, Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers. Modares Mech. Eng. 18, 174–181 (2018)

    Google Scholar 

  6. A. Fazaeli, M. Habibi, A.A. Ekrami, Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite—pearlite steel with the same chemical composition. Metall. Eng. 19, 84–93 (2016)

    Google Scholar 

  7. M. Alipour, M.A. Torabi, M. Sareban, H. Lashini, E. Sadeghi, A. Fazaeli, et al., Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels. Mech. Based Des. Struct. Mach. 1–17 (2019)

  8. A. Ghazanfari, S.S. Soleimani, M. Keshavarzzadeh, M. Habibi, A. Assempuor, R. Hashemi, Prediction of FLD for sheet metal by considering through-thickness shear stresses. Mech. Based Des. Struct. Mach. 1–18 (2019)

  9. M. Habibi, A. Ghazanfari, A. Asempour, R. Naghdabadi, R. Hashemi, Determination of forming limit diagram using two modified finite element models (2017)

  10. M. Habibi, M. Mohammadgholiha, H. Safarpour, Correction to: wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. J. Braz. Soc. Mech. Sci. Eng. 41, 250 (2019)

    Google Scholar 

  11. Z. Esmailpoor Hajilak, J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, H. Safarpour, Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mech. Based Des. Struct. Mach. 1–25 (2019)

  12. M. Habibi, D. Hashemabadi, H. Safarpour, Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. Eur. Phys. J. Plus 134, 307 (2019)

    Google Scholar 

  13. A. Pourjabari, Z.E. Hajilak, A. Mohammadi, M. Habibi, H. Safarpour, Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Comput. Math. Appl. 77, 2608 (2019)

    Google Scholar 

  14. F. Ebrahimi, M. Habibi, and H. Safarpour, “On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell,” Engineering with Computers, pp. 1-15, 2018

  15. J. Sun, J. Zhao, Multi-layer graphene reinforced nano-laminated WC-Co composites. Mater. Sci. Eng., A 723, 1–7 (2018)

    Google Scholar 

  16. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)

    Google Scholar 

  17. M. Rafiee, J. Rafiee, Z.-Z. Yu, N. Koratkar, Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95, 223103 (2009)

    Google Scholar 

  18. M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, et al., “Fracture and fatigue in graphene nanocomposites,” small, vol. 6, pp. 179-183, 2010

  19. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)

    Google Scholar 

  20. A. Montazeri, H. Rafii-Tabar, Multiscale modeling of graphene-and nanotube-based reinforced polymer nanocomposites. Phys. Lett. A 375, 4034–4040 (2011)

    Google Scholar 

  21. B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 60, 356–365 (2013)

    Google Scholar 

  22. Y. Wang, J. Yu, W. Dai, Y. Song, D. Wang, L. Zeng et al., Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym. Compos. 36, 556–565 (2015)

    Google Scholar 

  23. A. Vafamehr, M. E. Khodayar, and K. Abdelghany, “Oligopolistic Competition Among Cloud Providers in Electricity and Data Networks,” IEEE Transactions on Smart Grid, 2017

  24. H. Attariani, S.E. Rezaei, K. Momeni, Defect engineering, a path to make ultra-high strength low-dimensional nanostructures. Comput. Mater. Sci. 151, 307–316 (2018)

    Google Scholar 

  25. H. Attariani, S.E. Rezaei, K. Momeni, Mechanical property enhancement of one-dimensional nanostructures through defect-mediated strain engineering. Extreme Mechanics Letters 27, 66–75 (2019)

    Google Scholar 

  26. W. Gao, D. Dimitrov, H. Abdo, Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems-S 12, 711–721 (2018)

    Google Scholar 

  27. W. Gao, J.L.G. Guirao, B. Basavanagoud, J. Wu, Partial multi-dividing ontology learning algorithm. Inf. Sci. 467, 35–58 (2018)

    Google Scholar 

  28. W. Gao, W. Wang, D. Dimitrov, Y. Wang, Nano properties analysis via fourth multiplicative ABC indicator calculating. Arabian journal of chemistry 11, 793–801 (2018)

    Google Scholar 

  29. W. Gao, H. Wu, M.K. Siddiqui, A.Q. Baig, Study of biological networks using graph theory. Saudi journal of biological sciences 25, 1212–1219 (2018)

    Google Scholar 

  30. W. Gao, J.L.G. Guirao, M. Abdel-Aty, W. Xi, An independent set degree condition for fractional critical deleted graphs. Discrete & Continuous Dynamical Systems-S 12, 877–886 (2019)

    Google Scholar 

  31. A.A. Dezfuli, A. Shokouhmand, A.H. Oveis, Y. Norouzi, Reduced complexity and near optimum detector for linear-frequency-modulated and phase-modulated LPI radar signals. IET Radar Sonar Navig. 13, 593–600 (2018)

    Google Scholar 

  32. R. Zhong, Q. Wang, J. Tang, C. Shuai, B. Qin, Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Compos. Struct. 194, 49–67 (2018)

    Google Scholar 

  33. Y. Yang, Z. Wang, and Y. Wang, “Thermoelastic coupling vibration and stability analysis of rotating circular plate in friction clutch,” Journal of Low Frequency Noise, Vibration and Active Control, p. 1461348418817465, 2018

  34. M. Alipour, Transient forced vibration response analysis of heterogeneous sandwich circular plates under viscoelastic boundary support. Archives of Civil and Mechanical Engineering 18, 12–31 (2018)

    Google Scholar 

  35. O. Santawitee, S. Grall, B. Chayasombat, C. Thanachayanont, X. Hochart, J. Bernard, et al., “Processing of printed piezoelectric microdisks: effect of PZT particle sizes and electrodes on electromechanical properties,” Journal of Electroceramics, pp. 1-11, 2019

  36. T. Tanaka, F. Mizutani, T. Yasukawa, Dielectrophoretic tweezers for pickup and relocation of individual cells using microdisk electrodes with a microcavity. Electrochemistry 84, 361–363 (2016)

    Google Scholar 

  37. E. Prats-Alfonso, A. Dorado, R. Villa, X. Gamisans, D. Gabriel, G. Gabriel, et al., “3.3 Application of microfabricated electrochemical sensors,” Integrated sensors for overcoming Organ-On-a-Chip monitoring challenges, p. 45, 2017

  38. F. Ebrahimi, A. Rastgo, An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory. Thin-Walled Structures 46, 1402–1408 (2008)

    Google Scholar 

  39. F. Ebrahimi, A. Rastgoo, Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers. Smart Mater. Struct. 17, 015044 (2008)

    Google Scholar 

  40. H. Bisheh, A. Alibeigloo, M. Safarpour, and A. Rahimi, “Three-Dimensional Static and Free Vibrational Analysis of Graphene Reinforced Composite Circular/Annular Plate using Differential Quadrature Method,” International Journal of Applied Mechanics

  41. M. Safarpour, A. Rahimi, and A. Alibeigloo, “Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM,” Mechanics Based Design of Structures and Machines, pp. 1–29, 2019

  42. A. Mohammadi, H. Lashini, M. Habibi, H. Safarpour, Influence of Viscoelastic Foundation on Dynamic Behaviour of the Double Walled Cylindrical Inhomogeneous Micro Shell Using MCST and with the Aid of GDQM. Journal of Solid Mechanics 11, 440–453 (2019)

    Google Scholar 

  43. M. Habibi, D. Hashemabadi, H. Safarpour, Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. The European Physical Journal Plus 134, 307 (2019)

    Google Scholar 

  44. F. Ebrahimi, D. Hashemabadi, M. Habibi, and H. Safarpour, “Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell,” Microsystem Technologies, pp. 1-13, 2019

  45. H. R. Hashemi, A. a. Alizadeh, M. A. Oyarhossein, A. Shavalipour, M. Makkiabadi, and M. Habibi, “Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure,” Waves in Random and Complex Media, pp. 1–27, 2019

  46. M. Hosseini, R. Bahaadini, M. Makkiabadi, Application of the Green function method to flow-thermoelastic forced vibration analysis of viscoelastic carbon nanotubes. Microfluid. Nanofluid. 22, 6 (2018)

    Google Scholar 

  47. F. Ebrahimi, M. Daman, Dynamic modeling of embedded curved nanobeams incorporating surface effects. Coupled Syst. Mech 5, 255–267 (2016)

    Google Scholar 

  48. F. Ebrahimi, M. Daman, Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment. Structural Engineering and Mechanics 64, 121–133 (2017)

    Google Scholar 

  49. M. Habibi, A. Taghdir, H. Safarpour, Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Compos. B Eng. 175, 107125 (2019)

    Google Scholar 

  50. M. Habibi, M. Mohammadgholiha, H. Safarpour, Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41, 221 (2019)

    Google Scholar 

  51. H. Safarpour, S.A. Ghanizadeh, M. Habibi, Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory. The European Physical Journal Plus 133, 532 (2018)

    Google Scholar 

  52. H. Safarpour, Z. E. Hajilak, and M. Habibi, “A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation,” International Journal of Mechanics and Materials in Design, pp. 1-15, 2018

  53. F. Ebrahimi, M. Habibi, H. Safarpour, On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Engineering with Computers 35, 1375–1389 (2019)

    Google Scholar 

  54. H. Safarpour, Z.E. Hajilak, M. Habibi, A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int. J. Mech. Mater. Des. 15, 569–583 (2019)

    Google Scholar 

  55. F. Ebrahimi, M. Daman, Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams. Adv. Nano Res 5, 35–47 (2017)

    Google Scholar 

  56. F. Ebrahimi, M. Daman, R.E. Fardshad, Surface effects on vibration and buckling behavior of embedded nanoarches. Structural Engineering and Mechanics 64, 1–10 (2017)

    Google Scholar 

  57. F. Ebrahimi, M. Daman, V. Mahesh, Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory. ADVANCES IN NANO RESEARCH 7, 249–263 (2019)

    Google Scholar 

  58. F. Ebrahimi and M. Daman, “Investigating surface effects on thermomechanical behavior of embedded circular curved nanosize beams,” Journal of Engineering, vol. 2016, 2016

  59. F. Ebrahimi and M. Daman, “An Investigation of Radial Vibration Modes of Embedded Double-Curved-Nanobeam-Systems,” Çankaya Üniversitesi Bilim ve Mühendislik Dergisi, vol. 13, 2016

  60. F. Ebrahimi, M. Daman, Nonlocal thermo-electromechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam. SMART STRUCTURES AND SYSTEMS 20, 351–368 (2017)

    Google Scholar 

  61. J. Ehyaei, M. Daman, Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection. Advances in nano research 5, 179–192 (2017)

    Google Scholar 

  62. S. Zhou, R. Zhang, S. Zhou, A. Li, Free vibration analysis of bilayered circular micro-plate including surface effects. Appl. Math. Model. 70, 54–66 (2019)

    Google Scholar 

  63. A. R. Ghasemi and M. Mohandes, “Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory,” Mechanics of Advanced Materials and Structures, pp. 1-12, 2018

  64. R. Gholami, A. Darvizeh, R. Ansari, T. Pourashraf, Analytical treatment of the size-dependent nonlinear postbuckling of functionally graded circular cylindrical micro-/nano-shells. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 42, 85–97 (2018)

    Google Scholar 

  65. M. Mohammadimehr, M. Emdadi, H. Afshari, and B. Rousta Navi, “Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM,” International Journal of Smart and Nano Materials, vol. 9, pp. 233-260, 2018

  66. M. Mohammadimehr, S. J. Atifeh, and B. Rousta Navi, “Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings,” Journal of Vibration and Control, vol. 24, pp. 3471-3486, 2018

  67. B. Sajadi, F. Alijani, H. Goosen, F. van Keulen, Effect of pressure on nonlinear dynamics and instability of electrically actuated circular micro-plates. Nonlinear Dyn. 91, 2157–2170 (2018)

    Google Scholar 

  68. H. Safarpour, J. Pourghader, and M. Habibi, “Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator,” Journal of Vibration and Control, p. 1077546319828465, 2019

  69. Z.-W. Wang, Q.-F. Han, D.H. Nash, P.-Q. Liu, Investigation on inconsistency of theoretical solution of thermal buckling critical temperature rise for cylindrical shell. Thin-Walled Structures 119, 438–446 (2017)

    Google Scholar 

  70. H. Safarpour, Z. E. Hajilak, and M. Habibi, “A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation,” International Journal of Mechanics and Materials in Design, pp. 1-15

  71. H. Safarpour, M. Barooti, M. Ghadiri, Influence of Rotation on Vibration Behavior of a Functionally Graded Moderately Thick Cylindrical Nanoshell Considering Initial Hoop Tension. Journal of Solid Mechanics 11, 254–271 (2019)

    Google Scholar 

  72. F. Ebrahimi, H. Safarpour, Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects. Wind and Structures 27, 431–438 (2018)

    Google Scholar 

  73. K. Mohammadi, M.M. Barouti, H. Safarpour, M. Ghadiri, Effect of distributed axial loading on dynamic stability and buckling analysis of a viscoelastic DWCNT conveying viscous fluid flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41, 93 (2019)

    Google Scholar 

  74. H. SafarPour, M. Hosseini, M. Ghadiri, Influence of three-parameter viscoelastic medium on vibration behavior of a cylindrical nonhomogeneous microshell in thermal environment: an exact solution. J. Therm. Stresses 40, 1353–1367 (2017)

    Google Scholar 

  75. H. Safarpour, K. Mohammadi, M. Ghadiri, M.M. Barooti, Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM. Int. J. Struct. Stab. Dyn. 18, 1850123 (2018)

    Google Scholar 

  76. H. Safarpour, K. Mohammadi, M. Ghadiri, Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution. Journal of the Mechanical Behavior of Materials 26, 9–24 (2017)

    Google Scholar 

  77. H. SafarPour, B. Ghanbari, M. Ghadiri, Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell. Appl. Math. Model. 65, 428–442 (2019)

    Google Scholar 

  78. M. Shojaeefard, M. Mahinzare, H. Safarpour, H.S. Googarchin, M. Ghadiri, Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition. Appl. Math. Model. 61, 255–279 (2018)

    Google Scholar 

  79. M. Ghadiri, H. Safarpour, Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl. Phys. A 122, 833 (2016)

    Google Scholar 

  80. M. Ghadiri, H. SafarPour, Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment. J. Therm. Stresses 40, 55–71 (2017)

    Google Scholar 

  81. M. Ghadiri, N. Shafiei, H. Safarpour, Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst. Technol. 23, 1045–1065 (2017)

    Google Scholar 

  82. H. SafarPour, M. Ghadiri, Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid. Microfluid. Nanofluid. 21, 22 (2017)

    Google Scholar 

  83. M.M. Barooti, H. Safarpour, M. Ghadiri, Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations. The European Physical Journal Plus 132, 6 (2017)

    Google Scholar 

  84. K. Wang, B. Wang, C. Zhang, Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory. Acta Mech. 228, 129–140 (2017)

    Google Scholar 

  85. M. Mahinzare, M.J. Alipour, S.A. Sadatsakkak, M. Ghadiri, A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate. Mech. Syst. Signal Process. 115, 323–337 (2019)

    Google Scholar 

  86. M. Mahinzare, H. Ranjbarpur, M. Ghadiri, Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate. Mech. Syst. Signal Process. 100, 188–207 (2018)

    Google Scholar 

  87. M. Shojaeefard, H.S. Googarchin, M. Mahinzare, M. Ghadiri, Free vibration and critical angular velocity of a rotating variable thickness two-directional FG circular microplate. Microsyst. Technol. 24, 1525–1543 (2018)

    Google Scholar 

  88. M. Song, S. Kitipornchai, J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Google Scholar 

  89. R.G. De Villoria, A. Miravete, Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55, 3025–3031 (2007)

    Google Scholar 

  90. Q. Wang, On buckling of column structures with a pair of piezoelectric layers. Eng. Struct. 24, 199–205 (2002)

    Google Scholar 

  91. L. Ke, Y. Wang, J. Reddy, Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos. Struct. 116, 626–636 (2014)

    Google Scholar 

  92. J. N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis: CRC press, 2004

  93. C. Shu, Differential quadrature and its application in engineering: Springer Science & Business Media, 2012

  94. J.-B. Han, K. Liew, Axisymmetric free vibration of thick annular plates. Int. J. Mech. Sci. 41, 1089–1109 (1999)

    Google Scholar 

  95. H. Wu, S. Kitipornchai, J. Yang, Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater. Des. 132, 430–441 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzad Ebrahimi or Eris Elianddy Bin Supeni.

Appendix

Appendix

The governing equations of the GPLRC microdisk are given as follows:

$$ \begin{aligned} & \delta u^{i}_{0}{:} \\ & \quad (1 - l^{2} \nabla^{2} )\left[ \begin{aligned} \frac{\partial }{\partial R}\left( \begin{aligned} & \left[ {A^{i}_{11} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + B^{i}_{11} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - D^{i}_{11} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right] \\ & \quad + \,\left[ {A^{i}_{12} \frac{{u^{i}_{0} }}{{R^{i} }} + B^{i}_{12} \frac{{u_{1} }}{R} - D^{i}_{12} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] - X_{31} \phi \\ \end{aligned} \right) \hfill \\ - \frac{1}{R}\left( \begin{aligned} & \left[ {A^{i}_{12} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + B^{i}_{12} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - D^{i}_{12} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right] \\ & \quad + \,Q^{i}_{22} \left[ {A^{i}_{22} \frac{{u^{i}_{0} }}{{R^{i} }} + B^{i}_{22} \frac{{u^{i}_{1} }}{{R^{i} }} - D^{i}_{22} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] \\ \end{aligned} \right) \hfill \\ \end{aligned} \right] \\ & \quad = (1 - \mu^{2} \nabla^{2} )\left[ {I^{i}_{0} \frac{{\partial^{2} u^{i}_{0} }}{{\partial t^{2} }} + I^{i}_{1} \frac{{\partial^{2} u^{i}_{1} }}{{\partial t^{2} }} - I^{i}_{3} c_{1} \left( {\frac{{\partial^{2} u^{i}_{1} }}{{\partial t^{2} }} + \frac{{\partial^{3} w^{i}_{0} }}{{\partial t^{2} \partial R^{i} }}} \right)} \right];\;i = c,p \\ \end{aligned} $$
(P-1)
$$ \begin{aligned} & \delta w^{i}_{0}{:} \\ & \quad (1 - l^{2} \nabla^{2} )\left[ \begin{aligned} & c_{1} \frac{{\partial^{2} }}{{\partial R^{i2} }}\left( \begin{aligned} & \left[ {D^{i}_{11} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + E^{i}_{11} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - G^{i}_{11} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right] \\ & \quad + \,\left[ {D^{i}_{12} \frac{{u^{i}_{0} }}{{R^{i} }} + E^{i}_{12} \frac{{u^{i}_{1} }}{{R^{i} }} - G^{i}_{12} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] - X_{33} \phi \\ \end{aligned} \right) \\ & \quad - \,c_{1} \frac{\partial }{{R^{i} \partial R^{i} }}\left( \begin{aligned} & \left[ {D^{i}_{12} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + E^{i}_{12} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - G^{i}_{12} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right] \\ & \quad + Q^{i}_{22} \left[ {D^{i}_{22} \frac{{u^{i}_{0} }}{{R^{i} }} + E^{i}_{22} \frac{{u^{i}_{1} }}{{R^{i} }} - G^{i}_{22} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] \\ \end{aligned} \right) \\ & \quad + \,\frac{\partial }{{\partial R^{i} }}\left( {(A^{i}_{55} - 3C^{i}_{55} c_{1} )\left( {u^{i}_{1} + \frac{{\partial w^{i}_{0} }}{{\partial R^{i} }}} \right) + X_{11} \partial \phi /\partial R} \right) \\ & \quad - \,3c_{1} \frac{\partial }{{\partial R^{i} }}\left( {(C^{i}_{55} - 3E^{i}_{55} c_{1} )\left( {u^{i}_{1} + \frac{{\partial w^{i}_{0} }}{{\partial R^{i} }}} \right) + X_{12} \partial \phi /\partial R^{i} } \right) - N_{1}^{p} w^{i}_{{0,x^{2} }} \\ \end{aligned} \right] \\ & \quad = (1 - \mu^{2} \nabla^{2} )\left[ {c_{1} I^{i}_{3} \frac{{\partial^{3} u^{i}_{0} }}{{\partial R^{i} \partial t^{2} }} + c_{1} I^{i}_{4} \frac{{\partial^{3} u^{i}_{1} }}{{\partial R^{i} \partial t^{2} }} - I^{i}_{6} c_{1}^{2} \left( {\frac{{\partial^{3} u^{i}_{1} }}{{\partial R^{i} \partial t^{2} }} + \frac{{\partial^{4} w_{0}^{i} }}{{\partial t^{2} \partial R^{2} }}} \right) + \left( {I^{i}_{0} \frac{{\partial^{2} w^{i}_{0} }}{{\partial t^{2} }}} \right)} \right];\;i = c,p \\ \end{aligned} $$
(P-2)
$$ \begin{aligned} & \delta u^{i}_{1}{:} \\ & \quad (1 - l^{2} \nabla^{2} )\left[ \begin{aligned} & \frac{\partial }{{\partial R^{i} }}\left( \begin{aligned} & \left[ {B^{i}_{11} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + C^{i}_{11} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - E^{i}_{11} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right] \\ & \quad + \,\left[ {B^{i}_{12} \frac{{u^{i}_{0} }}{{R^{i} }} + C^{i}_{12} \frac{{u^{i}_{1} }}{{R^{i} }} - E^{i}_{12} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] - X_{32} \phi \\ \end{aligned} \right) \\ & \quad - \,\frac{{c_{1} \partial }}{{\partial R^{i} }}\left( \begin{aligned} & \left[ {D^{i}_{11} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + E^{i}_{11} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - G^{i}_{11} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right] \\ & \quad + \,\left[ {D^{i}_{12} \frac{{u^{i}_{0} }}{{R^{i} }} + E^{i}_{12} \frac{{u^{i}_{1} }}{{R^{i} }} - G^{i}_{12} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] - X_{33} \phi \\ \end{aligned} \right) \\ & \quad - \,\frac{1}{{R^{i} }}\left( \begin{aligned} & \left[ {B^{i}_{12} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + C^{i}_{12} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - E^{i}_{12} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right] \\ & \quad + \,Q^{i}_{22} \left[ {B^{i}_{22} \frac{{u^{i}_{0} }}{{R^{i} }} + C^{i}_{22} \frac{{u^{i}_{1} }}{{R^{i} }} - E^{i}_{22} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] \\ \end{aligned} \right) \\ & \quad + \,\frac{{c_{1} }}{{R^{i} }}\left( \begin{aligned} & \left[ {D^{i}_{12} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + E^{i}_{12} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - G^{i}_{12} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right] \\ & \quad + \,Q^{i}_{22} \left[ {D^{i}_{22} \frac{{u^{i}_{0} }}{{R^{i} }} + E^{i}_{22} \frac{{u^{i}_{1} }}{{R^{i} }} - G^{i}_{22} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] \\ \end{aligned} \right) \\ & \quad - \,\left[ {(A^{i}_{55} - 3C^{i}_{55} c_{1} )\left( {u^{i}_{1} + \frac{{\partial w^{i}_{0} }}{{\partial R^{i} }}} \right) + X_{11} \partial \phi /\partial R^{i} } \right] \\ & \quad + \,3c_{1} \left( {S^{i}_{Rz} = (C^{i}_{55} - 3E^{i}_{55} c_{1} )\left( {u^{i}_{1} + \frac{{\partial w^{i}_{0} }}{{\partial R^{i} }}} \right) + X_{12} \partial \phi /\partial R^{i} } \right) \\ \end{aligned} \right]\, \\ & \quad = (1 - \mu^{2} \nabla^{2} )\left[ \begin{aligned} & I^{i}_{1} \frac{{\partial^{2} u^{i}_{0} }}{{\partial t^{2} }} + I^{i}_{2} \frac{{\partial^{2} u^{i}_{1} }}{{\partial t^{2} }} - I^{i}_{4} c_{1} \left( {\frac{{\partial^{2} u^{i}_{1} }}{{\partial t^{2} }} + \frac{{\partial^{3} w_{0}^{i} }}{{\partial t^{2} \partial R^{i} }}} \right) - c_{1} I^{i}_{3} \frac{{\partial^{2} u^{i}_{0} }}{{\partial t^{2} }} \\ & \quad - \,c_{1} I^{i}_{4} \frac{{\partial^{2} u^{i}_{1} }}{{\partial t^{2} }} + I^{i}_{6} c_{1}^{2} \left( {\frac{{\partial^{2} u^{i}_{1} }}{{\partial t^{2} }} + \frac{{\partial^{3} w_{0}^{i} }}{{\partial t^{2} \partial R^{i} }}} \right) \\ \end{aligned} \right];\;\;i = c,p \\ \end{aligned} $$
(P-3)
$$ \begin{aligned} & \delta \phi ; \\ & \quad (1 - l^{2} \nabla^{2} )\left( \begin{aligned} & + X_{31} \frac{{\partial u^{p}_{0} }}{{\partial R^{p} }} + (X_{11} - 3X_{12} )\frac{{\partial^{2} w^{p}_{0} }}{{\partial R^{p2} }} - X_{33} \frac{{\partial^{2} w^{p}_{0} }}{{\partial R^{p2} }} \\ & \quad - \,( - X_{11} + 3X_{12} )\frac{{\partial u^{p}_{1} }}{{\partial R^{p} }} + X_{32} \frac{{\partial u^{p}_{1} }}{{\partial R^{p} }} - X_{33} \frac{{\partial u^{p}_{1} }}{{\partial R^{p} }} \\ & \quad - \,X_{41} \frac{{\partial^{2} \phi }}{{\partial R^{p2} }} + X_{42} \phi \\ \end{aligned} \right) = 0 \\ \end{aligned} $$
(P-4)

The GDQ form of the governing equations of the GPLRC microdisk is given as follows:

$$ \begin{aligned} & \delta u^{i}_{0}{:} \\ & \quad \left( {1 - l^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \hfill \\ + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R^{i} }} \hfill \\ \end{aligned} \right)} \right)\left[ \begin{aligned} & \left( \begin{aligned} & \left[ \begin{aligned} & A^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{0} + B^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} \\ & \quad - \,D^{i}_{11} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } w^{i}_{0} } \right) \\ \end{aligned} \right] \\ & \quad + \,\left[ \begin{aligned} & A^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + B^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} \\ & \quad - \,D^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right) \\ \end{aligned} \right] - X_{31} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi_{n} \\ \end{aligned} \right) \\ & \quad - \,\frac{1}{R}\left( \begin{aligned} & \left[ \begin{aligned} & A^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + B^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} \\ & \quad - \,D^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right) \\ \end{aligned} \right] \\ & \quad + \,Q^{i}_{22} \left[ \begin{aligned} A^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{0} }}{{R^{2i} {}_{n}}}} + B^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i}_{n} }}} \hfill \\ - D^{i}_{22} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i}_{n} }}} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{w^{i}_{0} }}{{R^{2i}_{n} }}} \right) \hfill \\ \end{aligned} \right] \\ \end{aligned} \right) \\ \end{aligned} \right] \\ & \quad = \left( {1 - \mu^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \hfill \\ + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R^{i} }} \hfill \\ \end{aligned} \right)} \right)\left[ {I^{i}_{0} \sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} u^{i}_{0} } I_{v} + I^{i}_{1} \sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} u^{i}_{1} } I_{v} - I^{i}_{3} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} u^{i}_{1} } I_{v} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} \omega^{2} w^{i}_{0} } I_{v} } \right)} \right];\;i = c,p \\ \end{aligned} $$
(P-5)
$$ \begin{aligned} & \delta w^{i}_{0}{:} \\ & \quad \left( {1 - l^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \hfill \\ + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R^{i} }} \hfill \\ \end{aligned} \right)} \right)\left[ \begin{aligned} & c_{1} \left( \begin{aligned} & \left[ \begin{aligned} & D^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } u^{i}_{0} + E^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } u^{i}_{1} \\ & \quad - \,G^{i}_{11} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(4)}_{n,v} } w^{i}_{0} } \right) \\ \end{aligned} \right] \\ & \quad + \,\left[ \begin{aligned} & D^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + E^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} \\ & \quad - \,G^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right) \\ \end{aligned} \right] - X_{33} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \phi \\ \end{aligned} \right) \\ & \quad - \,c_{1} \left( \begin{aligned} & \left[ \begin{aligned} & D^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + E^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} \\ & \quad - \,G^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right) \\ \end{aligned} \right] \\ & \quad + \,Q^{i}_{22} \left[ \begin{aligned} D^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R^{2i}_{n} }} + E^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R^{2i}_{n} }} \hfill \\ - G^{i}_{22} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R^{2i}_{n} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R^{2i}_{n} }}} \right) \hfill \\ \end{aligned} \right] \\ \end{aligned} \right) \\ & \quad + \,\left( {(A^{i}_{55} - 3C^{i}_{55} c_{1} )\left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } w^{i}_{0} } \right) + X_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \phi } \right) \\ & \quad - \,3c_{1} \left( \begin{aligned} & (C^{i}_{55} - 3E^{i}_{55} c_{1} )\left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } w^{i}_{0} } \right) \\ & \quad + \,X_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \phi \\ \end{aligned} \right) - N_{1}^{p} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } w^{i}_{0} \\ \end{aligned} \right] \\ & \quad = \left( {1 - \mu^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } + \hfill \\ \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R^{i} }} \hfill \\ \end{aligned} \right)} \right)\left[ \begin{aligned} & c_{1} I^{i}_{3} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} \omega^{2} u^{i}_{0} } I_{v} + c_{1} I^{i}_{4} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} \omega^{2} u^{i}_{1} } I_{v} \\ & \quad - \,I^{i}_{6} c_{1}^{2} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} \omega^{2} u^{i}_{1} } I_{v} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} \omega^{2} w^{i}_{0} } I_{v} } \right) + \left( {I^{i}_{0} \sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} w^{i}_{0} } I_{v} } \right) \\ \end{aligned} \right];\;i = c,p \\ \end{aligned} $$
(P-6)
$$ \begin{aligned} & \delta u^{i}_{1}{:} \\ & \quad \left( {1 - l^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \hfill \\ + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R^{i} }} \hfill \\ \end{aligned} \right)} \right)\left[ \begin{aligned} & \left( \begin{aligned} & \left[ {B^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{0} + C^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} - E^{i}_{11} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } w^{i}_{0} } \right)} \right] \\ & \quad + \,\left[ \begin{aligned} & B^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + C^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} \\ & \quad - \,E^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right) \\ \end{aligned} \right] - X_{32} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi \\ \end{aligned} \right) \\ & \quad - \,c_{1} \left( \begin{aligned} & \left[ {D^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{0} + E^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} - G^{i}_{11} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } w^{i}_{0} } \right)} \right] \\ & \quad + \left[ \begin{aligned} & D^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + E^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} \\ & \quad - G^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right) \\ \end{aligned} \right] - X_{33} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi \\ \end{aligned} \right) \\ & \quad - \,\left( \begin{aligned} & \left[ \begin{aligned} & B^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + C^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} \\ & \quad - \,E^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right) \\ \end{aligned} \right] \\ & \quad + \,Q^{i}_{22} \left[ {B^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{0} }}{{R^{2i}_{n} }}} + C^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i}_{n} }}} - E^{i}_{22} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i}_{n} }}} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{w^{i}_{0} }}{{R^{2i}_{n} }}} \right)} \right] \\ \end{aligned} \right) \\ & \quad + \,c_{1} \left( \begin{aligned} & \left[ \begin{aligned} & D^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + E^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} \\ & \quad - \,G^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{1} }}{{R_{n}^{i} }}} \right) \\ \end{aligned} \right] \\ & \quad + \,Q^{i}_{22} \left[ {D^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{0} }}{{R^{2i}_{n} }}} + E^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i}_{n} }}} - G^{i}_{22} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i}_{n} }}} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} \frac{{w^{i}_{0} }}{{R^{2i}_{n} }}} } \right)} \right] \\ \end{aligned} \right) \\ & \quad - \,\left[ {(A^{i}_{55} - 3C^{i}_{55} c_{1} )\left( {\sum\limits_{v = 1}^{{N_{n} }} {u^{i}_{0} } I_{v} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} w^{i}_{0} } } \right) + X_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi } \right] \\ & \quad + \,3c_{1} \left( {(C^{i}_{55} - 3E^{i}_{55} c_{1} )\left( {\sum\limits_{v = 1}^{{N_{n} }} {u^{i}_{1} } I_{v} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} w^{i}_{0} } } \right) + X_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi } \right) \\ \end{aligned} \right]\, \\ & \quad = \left( {1 - \mu^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \hfill \\ + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R^{i} }} \hfill \\ \end{aligned} \right)} \right)\left[ \begin{aligned} & I^{i}_{1} \sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} u^{i}_{0} } I_{v} + I^{i}_{2} \sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} u^{i}_{1} } I_{v} - I^{i}_{4} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} u^{i}_{1} } I_{v} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} \omega^{2} w^{i}_{0} } I_{v} } \right) \\ & \quad - \,c_{1} I^{i}_{3} \sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} u^{i}_{0} } I_{v} - c_{1} I^{i}_{4} \sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} u^{i}_{1} } I_{v} \\ & \quad + \,I^{i}_{6} c_{1}^{2} \left( {\sum\limits_{v = 1}^{{N_{n} }} {\omega^{2} u^{i}_{1} } I_{v} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} \omega^{2} w^{i}_{0} } I_{v} } \right) \\ \end{aligned} \right];i = c,p \\ \end{aligned} $$
(P-7)
$$ \begin{aligned} & \delta \phi{:} \\ & \quad \left( {1 - l^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } + \hfill \\ \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R_{{}}^{i} }} \hfill \\ \end{aligned} \right)} \right)\left( \begin{aligned} & + X_{31} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } u^{p}_{0} + (X_{11} - 3X_{12} - X_{33} )\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } w^{p}_{0} \\ & \quad - \,( - X_{11} + 3X_{12} - X_{32} + X_{33} )\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } u^{p}_{1} \\ & \quad - \,X_{41} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \phi + X_{42} \sum\limits_{v = 1}^{{N_{n} }} \phi I_{v} \\ \end{aligned} \right) = 0 \\ \end{aligned} $$
(P-8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

lori, E.S., Ebrahimi, F., Supeni, E.E.B. et al. Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur. Phys. J. Plus 135, 144 (2020). https://doi.org/10.1140/epjp/s13360-020-00217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00217-x

Navigation