Skip to main content
Log in

Optical properties of fluidic defect states in one-dimensional graphene-based photonic crystal biosensors: visible and infrared Hall regime sensing

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Advances in biotechnology are outpacing studies into the use of graphene in photonic biosensors due to its peculiar optical properties and the successful progress in the nanoscale integration of photonic crystals. Moreover, going beyond the usual Dirac cone approximation for graphene introduces nonlinear effects in graphene’s optics. In this work, by the use of the transfer matrix method, we investigate the effect of hopping parameter on the chemical and biosensing performance of a 1D defective photonic biosensor with a micro/nanofluidic channel as a central defect cavity for biological fluids and gas molecules to flow while interacting with two graphene sheet deposited on silicon dioxide layers of the device. As low-weight molecules absorption on graphene’s surface could affect hopping energy of graphene which plays a significant role in its optical conductivity obtained from the tight-binding model for the visible range, it will serve as a promising tool for the detection of gas and other analytes. We also examine the sensitivity of the defect modes to the changes of the refractive index of the biological fluids under the influence of quantum Hall situation for graphene in terahertz (THz) regime. It is revealed that two defective modes with relatively different sensing properties are emerged within the band stop of the device. The results of this study are not reported elsewhere to the best of our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Steglich, M. Hülsemann, B. Dietzel, A. Mai, Optical biosensors based on silicon-on-insulator ring resonators: a review. Molecules 24(3), 519 (2019)

    Google Scholar 

  2. C. Fenzl, T. Hirsch, O.S. Wolfbeis, Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014)

    Google Scholar 

  3. Y.N. Zhang, Y. Zhao, T. Zhou, Q. Wu, Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities. Lab Chip 18(1), 57–74 (2018)

    Google Scholar 

  4. Y. Liu, M.W.M. Salemink, Photonic crystal-based all-optical on-chip sensor. Opt. Express 20(18), 19912–19920 (2012)

    Google Scholar 

  5. F. Bayat, S. Ahmadi-Kandjani, H. Tajalli, Designing real-time biosensors and chemical sensors based on defective 1-D photonic crystals. IEEE Photonics Technol. Lett. 28(17), 1843–1846 (2016)

    Google Scholar 

  6. P.S. Nunes, N.A. Mortensen, J.P. Kutter, K.B. Mogensen, Refractive index sensor based on a 1D photonic crystal in a microfluidic channel. Sensors 10(3), 2348–2358 (2010)

    Google Scholar 

  7. S. Surdo, S. Merlo, F. Carpignano, L.M. Strambini, C. Trono, A. Giannetti, G. Barillaro, Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis. Lab Chip 12(21), 4403–4415 (2012)

    Google Scholar 

  8. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059 (1987)

    Google Scholar 

  9. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486 (1987)

    Google Scholar 

  10. J. D. Joannopoulos, R.D. Meade, J.N. Winn. Photonic crystals. Molding the flow of light (1995). https://www.amazon.com/Photonic--Crystals--Molding--Light--Second/dp/0691124566

  11. T.F. Krauss, M. Richard, S. Brand, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383(6602), 699 (1996)

    Google Scholar 

  12. E. Yablonovitch, T.J. Gmitter, R.D. Meade, A.M. Rappe, K. Brommer, J.D. Joannopoulos, Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67(24), 3380 (1991)

    Google Scholar 

  13. D.S. Wiersma, Disordered photonics. Nat. Photonics 7(3), 188 (2013)

    Google Scholar 

  14. Y. Akahane, T. Asano, B.S. Song, S. Noda, High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961), 944 (2003)

    Google Scholar 

  15. K.J. Lee, J.W. Wu, K. Kim, Defect modes in a one-dimensional photonic crystal with a chiral defect layer. Opt. Mater. Express 4(12), 2542–2550 (2014)

    Google Scholar 

  16. H.C. Hung, C.J. Wu, S.J. Chang, Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal. J. Appl. Phys. 110(9), 093110 (2011)

    Google Scholar 

  17. V. Skoromets, H. Němec, C. Kadlec, D. Fattakhova-Rohlfing, P. Kužel, Electric-field-tunable defect mode in one-dimensional photonic crystal operating in the terahertz range. Appl. Phys. Lett. 102(24), 241106 (2013)

    Google Scholar 

  18. K.V. Sreekanth, S. Zeng, K.T. Yong, T. Yu, Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B Chem. 182, 424–428 (2013)

    Google Scholar 

  19. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Google Scholar 

  20. A. K. Geim, K. S. Novoselov. The Rise of Graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 11–19 (2010). https://www.worldscientific.com/doi/abs/10.1142/9789814287005_0002

  21. A. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Google Scholar 

  22. K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, R. Yang, J. Giesbers, Electronic properties of graphene. Phys. Status Solidi (b) 244(11), 4106–4111 (2007)

    Google Scholar 

  23. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)

    Google Scholar 

  24. F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611 (2010)

    Google Scholar 

  25. L.A. Falkovsky, S.S. Pershoguba, Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76(15), 153410 (2007)

    Google Scholar 

  26. O.L. Berman, R.Y. Kezerashvili, Graphene-based one-dimensional photonic crystal. J. Phys. Condens. Matter 24(1), 015305 (2011)

    Google Scholar 

  27. O.L. Berman, V.S. Boyko, R.Y. Kezerashvili, A.A. Kolesnikov, Y.E. Lozovik, Graphene-based photonic crystal. Phys. Lett. A 374(47), 4784–4786 (2010)

    Google Scholar 

  28. O.L. Berman, V.S. Boyko, R.Y. Kezerashvili, A.A. Kolesnikov, Y.E. Lozovik, On transmittance and localization of the electromagnetic wave in two-dimensional graphene-based photonic crystals. Phys. Lett. A 382(31), 2075–2080 (2018)

    Google Scholar 

  29. Y. Zhu, Z. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. Hao, N. Yu, Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light Sci. Appl. 7(1), 67 (2018)

    Google Scholar 

  30. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652 (2007)

    Google Scholar 

  31. T. Stauber, N.M.R. Peres, A.K. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8), 085432 (2008)

    Google Scholar 

  32. S. Yuan, R. Roldán, H. De Raedt, M.I. Katsnelson, Optical conductivity of disordered graphene beyond the Dirac cone approximation. Phys. Rev. B 84(19), 195418 (2011)

    Google Scholar 

  33. Z. Wang, M. Shaygan, M. Otto, D. Schall, D. Neumaier, Flexible Hall sensors based on graphene. Nanoscale 8(14), 7683–7687 (2016)

    Google Scholar 

  34. S. Pisana, P.M. Braganca, E.E. Marinero, B.A. Gurney, Graphene magnetic field sensors. IEEE Trans. Magn. 46(6), 1910–1913 (2010)

    Google Scholar 

  35. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19(2), 026222 (2006)

    Google Scholar 

  36. A. Ferreira, N.M.R. Peres, A. Neto, Confined magneto-optical waves in graphene. Phys. Rev. B 85(20), 205426 (2012)

    Google Scholar 

  37. J.M. Poumirol, P.Q. Liu, T.M. Slipchenko, A.Y. Nikitin, L. Martin-Moreno, J. Faist, A.B. Kuzmenko, Electrically controlled terahert z magneto-optical phenomena in continuous and patterned graphene. Nat. Commun. 8, 14626 (2017)

    Google Scholar 

  38. P. Wang, G. Xu, L. Qin, Y. Xu, Y. Li, R. Li, Cell-based biosensors and its application in biomedicine. Sens. Actuators B Chem. 108(1–2), 576–584 (2005)

    Google Scholar 

  39. E. Luan, H. Shoman, D. Ratner, K. Cheung, L. Chrostowski, Silicon photonic biosensors using label-free detection. Sensors 18(10), 3519 (2018)

    Google Scholar 

  40. D. Jahani, A. Alidoust Ghatar, L. Abaspour, T. Jahani, Photonic Hall effect. J. Appl. Phys. 124(4), 043104 (2018)

    Google Scholar 

  41. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315(5817), 1379–1379 (2007)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by Iran National Science Foundation (INSF) under the contract number: 97003338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahani, D., Raissi, B., Taati, F. et al. Optical properties of fluidic defect states in one-dimensional graphene-based photonic crystal biosensors: visible and infrared Hall regime sensing. Eur. Phys. J. Plus 135, 160 (2020). https://doi.org/10.1140/epjp/s13360-019-00056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00056-5

Navigation