Skip to main content
Log in

Role of modern fractional derivatives in an armature-controlled DC servomotor

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper deals with the comparative analysis of modern fractional techniques for an armature-controlled DC servomotor. The mathematical modeling of an armature-controlled DC servomotor is based on the angular displacement of the motor shaft and the armature current in ampere. The governing linear differential equations are fractionalized in terms of Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional differentiations in the ranges \( 0\leq\xi_{1} \leq 1\) and \( 0\leq\xi_{2}\leq 1\), respectively. The fractional ordinary differential equations have been solved by implementing Laplace transform techniques. The transfer function of an armature-controlled DC servomotor is obtained by the coupling of fractional ordinary differential equations. The calculations of transfer functions have been traced out through the Mathcad 15 software while graphical simulation is based on MATLAB. In order to control the systems’ behavior, the transfer function is depicted graphically for fractional and non-fractional solutions along with embedded parameters. Our results suggest that the speed of rotation relies on the voltage which precisely controls the angular position of servomechanism through both types of fractional differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pany, R. Singh, R. Tripathi, Energy Convers. Manag. 122, 195 (2016)

    Google Scholar 

  2. F. Beltran-Carbajal, R. Tapia-Olvera, O. Aguilar-Mejia, A. Favela-Contreras, I. Lopez-Garcia, Int. Trans. Electron. Energy Syst. 28, 1 (2018)

    Google Scholar 

  3. F. Rios-Gutierrez, Y.F. Makableh, Efficient position control of DC Servomotor using backpropagation Neural Network, in 2011 Seventh International Conference on Natural Computation (IEEE, 2011) pp. 653--657

  4. F. Beltran-Carbajala, R. Tapia-Olverab, I. Lopez-Garciaa, D. Guillen, Electr. Power Syst. Res. 164, 70 (2018)

    Google Scholar 

  5. A. Tepljakov, E.A. Gonzalez, E. Petlenkov, J. Belikov, C.A. Monje, I. Petráš, ISA Trans. 60, 262 (2016)

    Google Scholar 

  6. S.H. HosseinNia, I. Tejado, B.M. Vinagre, Mechatronics 23, 781 (2013)

    Google Scholar 

  7. J.F. Gomez-Aguilar, V.F. Morales-Delgado, M.A. Taneco-Hernandez, D. Baleanu, R.F. Escobar Jimenez, M.M. Al Quarashi, Entropy 18, 402 (2016)

    ADS  Google Scholar 

  8. A.A. Kashif, A.M. Anwar, A.U. Muhammad, Eur. Phys. J. Plus 133, 113 (2018)

    Google Scholar 

  9. A. Atangana, S.T.A. Badr, Adv. Mech. Eng. 7, 1 (2015)

    Google Scholar 

  10. I. Koca, A. Atangana, Therm. Sci. 20, 2137 (2016)

    Google Scholar 

  11. K.A. Abro, M. Hussain, M.M. Baig, Eur. Phys. J. Plus 132, 439 (2017)

    Google Scholar 

  12. M. Saqib, A. Farhad, K. Ilyas, A.S. Nadeem, S. Sharidan, J. Therm. Anal. Calorim. 135, 523 (2019)

    Google Scholar 

  13. Kashif Ali Abro, Mukarrum Hussain, Mirza Mahmood Baig, Prog. Fract. Differ. Appl. 3, 69 (2017)

    Google Scholar 

  14. A.A. Zafar, C. Fetecau, Alex. Eng. J. 55, 2789 (2016)

    Google Scholar 

  15. A.M. Qasem, A.A. Kashif, K. Ilyas, Complexity 2018, 8918541 (2018)

    Google Scholar 

  16. H.L. Muzaffar, A.A. Kashif, A.S. Asif, Int. J. Adv. Appl. Sci. 4, 97 (2017)

    Google Scholar 

  17. A.S. Nadeem, F. Ali, I. Khan, M. Saqib, Neural Comput. Appl. 30, 1865 (2018)

    Google Scholar 

  18. A.A. Kashif, A.S. Muhammad, Punjab Univ. J. Math. 49, 113 (2017)

    Google Scholar 

  19. I. Khan, A. Gul, S. Shafie, J. Porous Media 20, 435 (2017)

    Google Scholar 

  20. K.A. Abro, H. Mukarrum, M.B. Mirza, Int. J. Nonlinear Anal. Appl. 9, 99 (2018)

    Google Scholar 

  21. A. Carpinteri, P. Cornetti, A. Sapora, Eur. Phys. J. ST 193, 193 (2011)

    Google Scholar 

  22. A. Atangana, B.S.T. Alkahtani, Entropy 17, 4439 (2015)

    ADS  MathSciNet  Google Scholar 

  23. Kashif Ali Abro, Anwer Ahmed Memon, Shahid Hussain Abro, Ilyas Khan, I. Tlili, Energy Rep. 5, 41 (2019)

    Google Scholar 

  24. O.J. Algahtani, Chaos, Solitons Fractals 89, 552 (2016)

    ADS  MathSciNet  Google Scholar 

  25. F. Tchier, M. Inc, Z.S. Korpinar, D. Baleanu, Adv. Mech. Eng. 8, 1 (2016)

    Google Scholar 

  26. Kashif Ali Abro, Ali Asghar Memon, Anwer Ahmed Memon, Analog-Integr. Circ. Signal Process. 99, 11 (2019)

    Google Scholar 

  27. J. Hristov, Therm. Sci. 21, 827 (2017)

    Google Scholar 

  28. S. Ambreen, A.A. Kashif, A.S. Muhammad, J. Therm. Anal. Calorim. 136, 2295 (2019)

    Google Scholar 

  29. H.W. Zhou, S. Yang, J. Hydrol. 566, 910 (2018)

    ADS  Google Scholar 

  30. M. Abdulhameed, M.M. Muhammad, A.Y. Gital, D.G. Yakubu, I. Khan, Physica A 519, 42 (2019)

    ADS  MathSciNet  Google Scholar 

  31. K.A. Abro, A.A. Irfan, M.A. Sikandar, K. Ilyas, J. King Saud Univ. Sci. (2018) https://doi.org/10.1016/j.jksus.2018.07.012

    Google Scholar 

  32. J.-F. Gómez-Aguilar, Torres, H. Yepez-Martínez, D. Baleanu, J.M. Reyes, I.O. Sosa, Adv. Differ. Equ. 2016, 173 (2016)

    Google Scholar 

  33. A. Yusuf, S. Qureshi, M. Inc, A.I. Aliyu, D. Baleanu, A. Shaikh, Chaos 28, 123121 (2018)

    ADS  MathSciNet  Google Scholar 

  34. Fahd Jarad, Thabet Abdel jawad, Zakia Hammouch, Chaos, Solitons Fractals 117, 16 (2018)

    ADS  MathSciNet  Google Scholar 

  35. Muhammad Saqib, Ilyas Khan, Sharidan Shafie, Chaos, Solitons Fractals 116, 79 (2018)

    ADS  MathSciNet  Google Scholar 

  36. Z. Shah, E. Bonyah, S. Islam, T. Gul, AIP Adv. 9, 015115 (2019)

    ADS  Google Scholar 

  37. Ndolane Sene, Chaos, Solitons Fractals 117, 68 (2018)

    ADS  MathSciNet  Google Scholar 

  38. Kashif Ali Abro, Anwar Ahmed Memon, Muhammad Aslam Uqaili, Eur. Phys. J. Plus 133, 113 (2018)

    Google Scholar 

  39. M. Sheikholeslami, Z. Shah, A. shafi, I. khan, Tilli, Sci. Rep. 9, 1196 (2019)

    ADS  Google Scholar 

  40. K.M. Owolabi, A. Atangana, Adv. Differ. Equ. 2017, 223 (2017)

    Google Scholar 

  41. J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)

    MathSciNet  Google Scholar 

  42. Z. Shah, T. Gul, S. Islam, A. Khan, J. Eng. Technol. 6, 280 (2017)

    Google Scholar 

  43. Kashif Ali Abro, Shaikh Hina Saeed, Norzieha Mustapha, Ilyas Khan, Asifa Tassadiq, Malays. J. Fundam. Appl. Sci. 14, 20 (2018)

    Google Scholar 

  44. A. Atangana, R.T. Alqahtani, Entropy 18, 40 (2016)

    ADS  Google Scholar 

  45. C. Fetecau, D. Vieru, W.A. Azhar, Appl. Sci. 7, 247 (2017)

    Google Scholar 

  46. A. Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 102, 285 (2017)

    ADS  MathSciNet  Google Scholar 

  47. Arshad Khan, Kashif Ali Abro, Asifa Tassaddiq, Ilyas Khan, Entropy 19, 1 (2017)

    Google Scholar 

  48. A. Atangana, Chaos, Solitons Fractals 102, 396 (2017)

    ADS  MathSciNet  Google Scholar 

  49. Kashif Ali Abro, Ilyas Khan, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 397 (2018)

    Google Scholar 

  50. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Google Scholar 

  51. A.K. Abro, M.R. Mohammad, K. Ilyas, A.A. Irfan, T. Asifa, J. Nanofluids 7, 738 (2018)

    Google Scholar 

  52. A.A. Kashif, K. Ilyas, T. Asifa, Math. Model. Nat. Phenom. 13, 1 (2018)

    MathSciNet  Google Scholar 

  53. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  54. Kashif Ali Abro, Ilyas Khan, Chin. J. Phys. 55, 1583 (2017)

    Google Scholar 

  55. Dur Muhammad Mugheri, Kashif Ali Abro, Muhammad Anwar Solangi, Int. J. Adv. Appl. Sci. 5, 97 (2018)

    Google Scholar 

  56. K.A. Abro, J.F. Gomez-Aguilar, Eur. Phys. J. Plus 134, 101 (2019)

    Google Scholar 

  57. A.K. Ali, K. Ilyas, F.G.A. Jose, J. Braz. Soc. Mech. Sci. Eng. 41, 174 (2019)

    Google Scholar 

  58. A.A. Kashif, Y. Ahmet, Iran. J. Sci. Technol. Trans. A 43, 1 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abro, K.A., Gómez-Aguilar, J.F., Khan, I. et al. Role of modern fractional derivatives in an armature-controlled DC servomotor. Eur. Phys. J. Plus 134, 553 (2019). https://doi.org/10.1140/epjp/i2019-12957-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12957-6

Navigation