Skip to main content
Log in

Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Fractional calculus extends the scope of adaptive algorithms supporting the design of novel fractional methods that outperform standard strategies in various applications arising in applied physics and engineering. In this study, a momentum fractional least-mean-square (M-FLMS) algorithm for nonlinear system identification using a first and fractional-order gradient information is proposed. The M-FLMS avoids being trapped in local minima and provides faster convergence than the standard FLMS. The convergence and complexity analysis of the M-FLMS are given along with simulation results of a benchmark nonlinear system identification problem. The M-FLMS accuracy is verified through a parameter estimation problem for a nonlinear Hammerstein structure, modeling an electrically stimulated muscle (ESM) for rehabilitation of paralyzed muscles. The proposed method is studied in detail for different levels of noise variance, fractional orders and proportion of gradients used in the current update.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Billings, Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains (John Wiley and Sons, Ltd, UK, 2013)

  2. F. Chen, F. Ding, J. Comput. Nonlinear Dyn. 11, 021005 (2016)

    Article  Google Scholar 

  3. V.Z. Filipovic, Nonlinear Dyn. 90, 1427 (2017)

    Article  Google Scholar 

  4. M. Lawryńczuk, Nonlinear Dyn. 86, 1193 (2016)

    Article  MathSciNet  Google Scholar 

  5. F. Alonge et al., IEEE Trans. Ind. Appl. 51, 3975 (2015)

    Article  Google Scholar 

  6. C.M. Holcomb, R.A. de Callafon, R.R Bitmead, IFAC Proc. 47, 493 (2014)

    Article  Google Scholar 

  7. O.A. Maatallah et al., Appl. Energy 145, 191 (2015)

    Article  Google Scholar 

  8. F. Le, Identification of electrically stimulated muscle after stroke, Doctoral dissertation (University of Southampton, 2011)

  9. F. Le et al., Control Eng. Practice 20, 386 (2012)

    Article  Google Scholar 

  10. F. Le et al., Control Eng. Practice 18, 396 (2010)

    Article  Google Scholar 

  11. K. Narendra, P. Gallman, IEEE Trans. Autom. Control 11, 546 (1966)

    Article  Google Scholar 

  12. W. Greblicki, M. Pawlak, Int. J. Control 45, 343 (1987)

    Article  Google Scholar 

  13. A. Mehmood et al., Signal, Image Video Proc. 12, 1603 (2018)

    Article  Google Scholar 

  14. M.A.Z. Raja et al., Neural Comput. Appl. 29, 1455 (2018)

    Article  Google Scholar 

  15. D. Comminiello et al., Signal Process. 135, 168 (2017)

    Article  Google Scholar 

  16. C. Wang, T. Tang, Nonlinear Dyn. 77, 769 (2014)

    Article  Google Scholar 

  17. F. Ding, X.P. Liu, G. Liu, Digit. Signal Process. 21, 215 (2011)

    Article  Google Scholar 

  18. P. Cao, X. Luo, Digit. Signal Process. 56, 15 (2016)

    Article  MathSciNet  Google Scholar 

  19. Q. Shen, F. Ding, Nonlinear Dyn. 85, 499 (2016)

    Article  Google Scholar 

  20. Y. Wang, F. Ding, Automatica 71, 308 (2016)

    Article  Google Scholar 

  21. F. Ding, X. Liu, J. Chu, IET Control Theory Appl. 7, 176 (2013)

    Article  MathSciNet  Google Scholar 

  22. G. Toth et al., J. Comput. Phys. 231, 870 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. L. Zhuo et al., Chin. Phys. 14, 1095 (2005)

    Article  ADS  Google Scholar 

  24. F. Tobar et al., Pattern Recog. Lett. 105, 200 (2018)

    Article  Google Scholar 

  25. Y. Zhao et al., Infrared Phys. Technol. 65, 17 (2014)

    Article  ADS  Google Scholar 

  26. Y. Tan, Z. He, B. Tian, IEEE Signal Process. Lett. 22, 1244 (2015)

    Article  ADS  Google Scholar 

  27. N.I. Chaudhary et al., Neural Comput. Appl. 29, 41 (2018)

    Article  Google Scholar 

  28. S. Cheng et al., Signal Process. 133, 260 (2017)

    Article  Google Scholar 

  29. M. Geravanchizadeh, S.G. Osgouei, Iran. J. Elect. Electron. Eng. 10, 256 (2014)

    Google Scholar 

  30. S. Zubair et al., Signal Process. 142, 441 (2018)

    Article  Google Scholar 

  31. J.T. Machado, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. Numer. Simul. 16, 1140 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. S. He, S. Banerjee, B. Yan, Complexity 2018, 4140762 (2018)

    Google Scholar 

  33. S. He, S. Banerjee, Physica A 501, 408 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. H. Sun et al., Commun. Nonlinear Sci. Numer. Simul. 64, 213 (2018)

    Article  ADS  Google Scholar 

  35. Y. Wang, Eur. Phys. J. Plus 133, 481 (2018)

    Article  Google Scholar 

  36. V.F. Morales-Delgado et al., Eur. Phys. J. Plus 133, 200 (2018)

    Article  Google Scholar 

  37. J.F. Gómez-Aguilar et al., Eur. Phys. J. Plus 133, 103 (2018)

    Article  Google Scholar 

  38. R. Roohi et al., Eur. Phys. J. Plus 133, 412 (2018)

    Article  Google Scholar 

  39. N.I. Chaudhary, M.A.Z. Raja, Nonlinear Dyn. 79, 1385 (2015)

    Article  Google Scholar 

  40. N.I. Chaudhary, M.A.Z. Raja, A.U.R. Khan, Nonlinear Dyn. 82, 1811 (2015)

    Article  Google Scholar 

  41. M.S. Aslam, N.I. Chaudhary, M.A.Z. Raja, Nonlinear Dyn. 87, 519 (2017)

    Article  Google Scholar 

  42. S.S. Haykin, Adaptive Filter Theory (Pearson Education, India, 2008)

  43. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Elsevier, 1998)

  44. S. Roy, J.J. Shynk, IEEE Trans. Acoust., Speech, Signal Process. 38, 2088 (1990)

    Article  Google Scholar 

  45. N.I. Chaudhary, S. Zubair, M.A.Z. Raja, Neural Comput. Appl. 30, 1133 (2018)

    Article  Google Scholar 

  46. T. Kailath, Linear Systems (Prentice-Hall, Englewood Cliffs, NJ, 1980)

  47. S. Qin et al., Med. Phys. 43, 3388 (2016)

    Article  Google Scholar 

  48. K. Hammar, T. Djamah, M. Bettayeb, Nonlinear Dyn. 96, 2613 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saeed Aslam.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, N.I., Zubair, S., Aslam, M.S. et al. Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model. Eur. Phys. J. Plus 134, 407 (2019). https://doi.org/10.1140/epjp/i2019-12785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12785-8

Navigation