Skip to main content
Log in

Late-time accelerated scaling attractors in DGP (Dvali-Gabadadze-Porrati) braneworld

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the evolution of late universe, the main source of matter are Dark energy and Dark matter. They are indirectly detected only through their gravitational manifestations. So the possibility of interaction with each other without violating observational restrictions is not ruled out. With this motivation, we investigate the dynamics of DGP braneworld where source of dark energy is a scalar field and it interacts with matter source. Since observation favours phantom case more, we have also studied the dynamics of interacting phantom scalar field. In non-interacting DGP braneworld there are no late-time accelerated scaling attractors and hence cannot alleviate the coincidence problem. In this paper, we shall show that it is possible to get late-time accelerated scaling solutions. The phase space is studied by taking two categories of potentials (exponential and non-exponential functions). The stability of critical points are examined by taking two specific interactions. The first interaction gives late-time accelerated scaling solution for phantom field only under exponential potential, while for second interaction we do not get any scaling solution. Furthermore, we have shown that this scaling solution is also classically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. D.N. Spergel et al., Astrophys J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  3. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  4. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 571, A16 (2014)

    Article  ADS  Google Scholar 

  5. S.M. Carroll, Liv. Rev. Relativ. 4, 1 (2001) arXiv:astro-ph/0004075

    ADS  Google Scholar 

  6. P. Peebles, P. Ratra, Rev. Mod. Phys. 75, 559 (2003) arXiv:astro-ph/0207347

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A.R. Liddle, D.H. Lyth, Cosmological Inflation and Large Scale Structure (Cambridge University Press, Cambridge, UK, 2003)

  8. J. Magana, T. Matos, J. Phys. Conf. Ser. 378, 012012 (2012)

    Article  ADS  Google Scholar 

  9. E.V. Linder, Gen. Relativ. Gravit. 40, 329 (2008) arXiv:704.2064

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. D 63, 103510 (2001) arXiv:astro-ph/0006373

    Article  ADS  Google Scholar 

  11. R.R. Caldwell, Phys. Lett. B 545, 23 (2002) arXiv:astro-ph/9908168

    Article  ADS  Google Scholar 

  12. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  14. J. Ellis, S. Kalara, K.A. Olive, C. Wetterich, Phys. Lett. B 228, 264 (1989)

    Article  ADS  Google Scholar 

  15. C. Wetterich, Astron. Astrophys. 301, 321 (1995)

    ADS  Google Scholar 

  16. L. Amendola, Phys. Rev. D 60, 043501 (1999) arXiv:astro-ph/9904120

    Article  ADS  Google Scholar 

  17. Z.K. Guo, Y.Z. Zhang, Phys. Rev. D 71, 023501 (2005) arXiv:astro-ph/0411524

    Article  ADS  Google Scholar 

  18. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004 (2005) arXiv:hep-th/0501025

    Article  ADS  Google Scholar 

  19. R. Maartens, Living Rev. Relativ. 7, 7 (2004)

    Article  ADS  Google Scholar 

  20. G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. C. Deffayet, Phys. Lett. B 502, 199 (2001)

    Article  ADS  MATH  Google Scholar 

  22. J. Dutta, S. Chakraborty, M. Ansari, Int. J. Theor. Phys. 49, 2680 (2010) arXiv:1006.2206 [gr-qc]

    Article  MATH  Google Scholar 

  23. J. Dutta, S. Chakraborty, M. Ansari, Mod. Phys. Lett. A 25, 3069 (2010) arXiv:1005.5321 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  24. J. Dutta, S. Chakraborty, Int. J. Theor. Phys. 50, 2383 (2011) arXiv:1006.2210 [gr-qc]

    Article  MATH  Google Scholar 

  25. R. Lazkoz, R. Marteens, E. Majerotto, Phys. Rev. D 74, 083510 (2006) arXiv:astro-ph/0605701

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Lue, G.D Starkman, Phys. Rev. D 70, 101501 (2004) arXiv:astro-ph/0408246

    Article  ADS  Google Scholar 

  27. P.L. Chimento, R. Lazkoz, R. Maartens, I. Quiros, JCAP 09, 004 (2006) arXiv:astro-ph/0605450

    Article  ADS  Google Scholar 

  28. M. Bouhmadi-Lopez, R. Lazkoz, Phys. Lett. B 654, 51 (2007) arXiv:astro-ph/0706.3896

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. H. Zhang, Z.H. Zhu, Phys. Rev. D 75, 023510 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. X. Wu, R.G. Cai, Z.H. Zhu, Phys. Rev. D 77, 043502 (2008)

    Article  ADS  Google Scholar 

  31. J. Wainwright, G.F.R. Ellis, Dynamical Systems in Cosmology (Cambridge University Press, 1997)

  32. A.A. Coley, Dynamical Systems and Cosmology (Kluwer Academic Publishers, Dordrecht, Boston, London, 2003)

  33. C.G. Boehmer, G. Caldera-Calbral, R. Lazkoz, R. Maartens, Phys. Rev. D 78, 023505 (2008) arXiv:gr-gc/0801.1565

    Article  ADS  Google Scholar 

  34. Z.K. Guo, R.G. Cai, Y.Z. Zhang, JCAP 05, 002 (2005) arXiv:astro-ph/0412624

    Article  ADS  Google Scholar 

  35. N. Mahata, S. Chakraborty, Mod. Phys. Lett. A 30, 1550134 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. S.K. Biswas, S. Chakraborty, Int. J. Mod. Phys. D 24, 1550046 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. S.K. Biswas, S. Chakraborty, Gen. Relativ. Gravit. 47, 22 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Shahalam, S.D. Pathak, M.M. Verma, M.Y. Khlopov, R. Myrzakulov, Eur. Phys. J. C 75, 395 (2015) arXiv:gr-gc/1503.08712

    Article  ADS  Google Scholar 

  39. E.J. Copeland, A.R. Liddle, D. Wands, Phys. Rev. D 57, 4686 (1998) arXiv:gr-qc/9711068

    Article  ADS  Google Scholar 

  40. A.R. Liddle, R.J. Scherrer, Phys. Rev. D 59, 023509 (1999) arXiv:astro-ph/9809272

    Article  ADS  Google Scholar 

  41. S. Tsujikawa, M. Sami, Phys. Lett. B 603, 113 (2004) arXiv:hep-th/0409212

    Article  ADS  Google Scholar 

  42. I. Quiros, R. Garcia-Salcedo, T. Matos, C. Moreno, Phys. Lett. B 670, 259 (2009) arXiv:gr-gc 0802.3362

    Article  ADS  Google Scholar 

  43. Y. Leyva, D. Gonzalez, T. Gonzalez, T. Matos, I. Quiros, Phys. Rev. D 80, 044026 (2009) arXiv:gr-gc/0909.0281

    Article  ADS  Google Scholar 

  44. K. Nozari, F. Rajabi, K. Asadi, Class. Quantum Grav. 29, 175002 (2012) arXiv:gr-gc/1208.1666

    Article  ADS  MathSciNet  Google Scholar 

  45. A.D. Miller et al., Astrophys. J. Lett. 524, L1 (1999)

    Article  ADS  Google Scholar 

  46. N. Liang, Z.H. Zhu, Res. Astron. Astrophys., 497 (2011)

  47. L. Jie-Chao et al., Chin. Phys. Lett. 2, 802 (2008)

    Article  Google Scholar 

  48. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, Heidelberg, Berlin, 1990)

  49. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology Chemistry and Engineering (Westview Press, Boulder, 2001)

  50. L. Perko, Differential Equations and Dynamical Systems (Springer Verlag, 1991)

  51. B. Aulbach, Continuous and Discrete Dynamics near Manifolds of Equilibria, in Lecture Notes in Mathematics, Vol. 1058 (Springer, 1984)

  52. N. Roy, N. Banerjee, Eur. Phys. J. Plus 129, 162 (2014)

    Article  Google Scholar 

  53. J. Dutta, H. Zonunmuiwah, Eur. Phys. J. Plus 130, 221 (2015)

    Article  Google Scholar 

  54. A.P. Billiyard, A.A. Coley, Phys. Rev. D 61, 083503 (2000) arXiv:astro-ph/9908224

    Article  ADS  MathSciNet  Google Scholar 

  55. L. Amendola, S. Tsujikawa, Dark Energy Theory and Observations (Cambridge University Press, Cambridge, UK, 2010)

  56. N. Roy, N. Banerjee, Ann. Phys. 356, 452 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  57. I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999) arXiv:astro-ph/9807002

    Article  ADS  Google Scholar 

  58. A.P. Billyard, The Asymptotic Behaviour of Cosmological Models Containing Matter and Scalar Fields, PhD thesis, Dalhousie University (1999)

  59. F. Lucchin, S. Matarrese, Phys. Rev. D 32, 1316 (1985)

    Article  ADS  Google Scholar 

  60. C. Wetterich, Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  61. D. Wands, E.J. Copeland, A.R. Liddle, Ann. N.Y. Acad. Sci. 688, 647 (1993)

    Article  ADS  Google Scholar 

  62. N. Piazza, S. Tsujikawa, JCAP 07, 004 (2004)

    Article  ADS  Google Scholar 

  63. N. Mahata, S. Chakraborty, Gen. Relativ. Gravit. 46, 1721 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibitesh Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, J., Khyllep, W. & Syiemlieh, E. Late-time accelerated scaling attractors in DGP (Dvali-Gabadadze-Porrati) braneworld. Eur. Phys. J. Plus 131, 33 (2016). https://doi.org/10.1140/epjp/i2016-16033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16033-7

Keywords

Navigation