Skip to main content
Log in

A variety of exact solutions for the time fractional Cahn-Allen equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear time fractional Cahn-Allen equation is studied by three distinct methods. These methods are also applied to derive a variety of travelling wave solutions with distinct physical structures for this nonlinear fractional equation. As a result, different types of exact solutions are obtained. The three methods demonstrate power, reliability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993).

  2. I. Podlubny, Fractional Differential Equations (Academic Press, California, 1999).

  3. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).

  4. B. Zheng, Commun. Theor. Phys. 58, 623 (2012).

    Article  Google Scholar 

  5. K.A. Gepreel, S. Omran, Chin. Phys. B 21, 110204 (2012).

    Article  Google Scholar 

  6. A. Bekir, Ö. Güner, Chin. Phys. B 22, 110202 (2013).

    Article  Google Scholar 

  7. A. Biswas, A.H. Bhrawy, M.A. Abdelkawy, A.A. Alshaery, E.M. Hilal, Rom. J. Phys. 59, 433 (2014).

    Google Scholar 

  8. S. Zhang, Q.-A. Zong, D. Liu, Q. Gao, Commun. Fractional Calc. 1, 48 (2010).

    Google Scholar 

  9. A. Bekir, Ö. Güner, A.C. Cevikel, Abst. Appl. Anal. 2013, 426462 (2013).

    Google Scholar 

  10. B. Zheng, Sci. World J. 2013, 465723 (2013).

    Google Scholar 

  11. B. Lu, J. Math. Anal. Appl. 395, 684 (2012).

    Article  MathSciNet  Google Scholar 

  12. M. Eslami, B.F. Vajargah, M. Mirzazadeh, A. Biswas, Indian J. Phys. 88, 177 (2014).

    Article  Google Scholar 

  13. S. Zhang, H.-Q. Zhang, Phys. Lett. A 375, 1069 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  14. B. Zheng, C. Wen, Adv. Differ. Equ. 2013, 199 (2013).

    Article  MathSciNet  Google Scholar 

  15. J.F. Alzaidy, Brit. J. Math. Comp. Sci. 3, 153 (2013).

    Article  Google Scholar 

  16. W. Liu, K. Chen, Pramana J. Phys. 81, 3 (2013).

    Article  Google Scholar 

  17. H. Bulut, H.M. Baskonus, Y. Pandir, Abstr. Appl. Anal. 2013, 636802 (2013).

    MathSciNet  Google Scholar 

  18. Y. Pandir, Y. Gurefe, E. Misirli, Int. J. Model. Optim. 3, 4 (2013).

    Google Scholar 

  19. N. Taghizadeh, M. Mirzazadeh, M. Rahimian, M. Akbari, Ain Shams Eng. J. 4, 897 (2013).

    Article  Google Scholar 

  20. A. Bekir, Ö. Güner, Int. J. Nonlinear Sci. Numer. Simulat. 15, 463 (2014).

    Article  Google Scholar 

  21. G. Jumarie, Comput. Math. Appl. 51, 1367 (2006).

    Article  MathSciNet  Google Scholar 

  22. G. Jumarie, Appl. Math. Lett. 22, 378 (2009).

    Article  MathSciNet  Google Scholar 

  23. Z.B. Li, J.H. He, Math. Comput. Appl. 15, 970 (2010).

    MathSciNet  Google Scholar 

  24. Z.B. Li, J.H. He, Nonlinear Sci. Lett. A Math. Phys. Mech. 2, 121 (2011).

    Google Scholar 

  25. J.H. He, S.K. Elegan, Z.B. Li, Phys. Lett. A 376, 257 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Saad, S.K. Elagan, Y.S. Hamed, M. Sayed, Int. J. Basic Appl. Sci. 13, 23 (2013).

    Google Scholar 

  27. T. Elghareb, S.K. Elagan, Y.S. Hamed, M. Sayed, Int. J. Basic Appl. Sci. 13, 19 (2013).

    Google Scholar 

  28. J.H. He, M.A. Abdou, Chaos Solitons Fractals 34, 1421 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  29. J.H. He, X.H. Wu, Chaos Solitons Fractals 30, 700 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Bekir, Int. J. Nonlinear Sci. Numer. Simulat. 10, 735 (2009).

    Article  Google Scholar 

  31. M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Bekir, Phys. Lett. A 372, 3400 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  33. T.R. Ding, C.Z. Li, Ordinary differential equations (Peking University Press, Peking, 1996).

  34. Z.S. Feng, J. Phys. A: Math. Gen. 35, 343 (2002).

    Article  ADS  Google Scholar 

  35. A. Bekir, O. Unsal, Phys. Scr. 85, 065003 (2012).

    Article  ADS  Google Scholar 

  36. Z. Feng, X. Wang, Phys. Scr. 64, 7 (2001).

    Article  Google Scholar 

  37. Z. Feng, K. Roger, J. Math. Anal. Appl. 328, 1435 (2007).

    Article  MathSciNet  Google Scholar 

  38. N. Bourbaki, Commutative Algebra (Addison-Wesley, Paris, 1972).

  39. A. Esen, M.N. Yagmurlu, O. Tasbozan, Appl. Math. Inf. Sci. 7, 1951 (2013).

    Article  MathSciNet  Google Scholar 

  40. H. Jafari, H. Tajadodi, D. Baleanu, J. Comput. Nonlinear Dyn. 9, 021019 (2014).

    Article  Google Scholar 

  41. G. Hariharan, Appl. Math. Sci. 3, 2523 (2009).

    MathSciNet  Google Scholar 

  42. F. Tascan, A. Bekir, Appl. Math. Comput. 207, 279 (2009).

    Article  MathSciNet  Google Scholar 

  43. N. Taghizadeh, M. Mirzazadeh, A.P. Samiei, J. Vahidi, Ain Shams Eng. J. 3, 321 (2012).

    Article  Google Scholar 

  44. A. Bekir, Phys. Wave Phenom. 20, 1 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Bekir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güner, O., Bekir, A. & Cevikel, A.C. A variety of exact solutions for the time fractional Cahn-Allen equation. Eur. Phys. J. Plus 130, 146 (2015). https://doi.org/10.1140/epjp/i2015-15146-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15146-9

Keywords

Navigation