Skip to main content
Log in

Localization model description of the interfacial dynamics of crystalline Cu and \(\hbox {Cu}_{64}\hbox {Zr}_{36}\) metallic glass nanoparticles

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Many of the special properties of nanoparticles (NPs) and nanomaterials broadly derive from the significant fraction of particles (atoms, molecules or segments of polymeric molecules) in the NP interfacial region in which the interparticle interactions are characteristically highly anharmonic in comparison to the bulk material. This leads to relatively large mean square particle displacements relative to the material interior, often resulting in a strong increase interfacial mobility and reactivity in both crystalline and glass NPs. The ‘Debye–Waller factor’, or the mean square particle displacement \(<u^{2}>\) on a ps ‘caging’ timescale relative to the square of the average interparticle distance \(\upsigma ^{2}\), provides an often experimentally accessible measure of the strength of this anharmonic interaction. The Localization Model (LM) of the dynamics of condensed materials relates this thermodynamic property to the structural relaxation time \(\tau _{\alpha }\), determined from the intermediate scattering function, without any free parameters. Moreover, the LM allows for the prediction of the diffusion coefficient D when combined with the ‘decoupling’ or Fractional Stokes-Einstein relation linking \(\tau _{\alpha }\) to D. In the current study, we employed classical molecular dynamics simulation to investigate the structural relaxation and diffusion of model \(\hbox {Cu}_{\mathrm {64}}\hbox {Zr}_{\mathrm {36}}\) metallic glass and Cu crystalline NPs with different sizes. As with previous studies validating the LM on model bulk and crystalline materials, and for the interfacial dynamics of thin crystalline and metallic glass films, we find the LM model also describes the interfacial dynamics of model crystalline metal (Cu) and metallic glass (\(\hbox {Cu}_{\mathrm {64}}\hbox {Zr}_{\mathrm {36}})\) NPs to a good approximation, further confirming the generality of the model.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that supports the findings of this study are available within the article and its supplementary information.]

References

  1. H. Zhang, P. Kalvapalle, J.F. Douglas, Soft Matter 6(23), 5944 (2010)

    Article  ADS  Google Scholar 

  2. H. Zhang, J.F. Douglas, Soft Matter 9(4), 1266 (2013)

    Article  ADS  Google Scholar 

  3. H. Zhang, J.F. Douglas, Soft Matter 9(4), 1254 (2013)

    Article  ADS  Google Scholar 

  4. Y. Yang, H. Zhang, J.F. Douglas, Acs Nano 8(7), 7465 (2014)

    Article  Google Scholar 

  5. G. Mahmud, H. Zhang, J.F. Douglas, J. Chem. Phys. 153(12), 124508 (2020)

    Article  ADS  Google Scholar 

  6. L.S. Lobo, S.A.C. Carabineiro, Fuel 183, 457 (2016)

    Article  Google Scholar 

  7. B.M. Schwarzschild, Phys. Today 34(6), 19 (1981)

    Article  Google Scholar 

  8. S.E. Golunski, Platin Met. Rev. 51(3), 162 (2007)

    Article  Google Scholar 

  9. L.S. Lobo, C-J Carbon Res 5(3), 42 (2019)

  10. L.S. Lobo, S.A.C. Carabineiro, C-J Carbon Res. 6(2), 18 (2020)

    Article  Google Scholar 

  11. L.S. Lobo, Carbon 114, 411 (2017)

    Article  Google Scholar 

  12. S. Hofmann, G. Csanyi, A.C. Ferrari, M.C. Payne, J. Robertson, Phys. Rev. Lett. 95(3), 036101 (2005)

    Article  ADS  Google Scholar 

  13. Y. Tian, W. Jiao, P. Liu, S.X. Song, Z. Lu, A. Hirata, M.W. Chen, Nat. Commun. 10, 5249 (2019)

    Article  ADS  Google Scholar 

  14. M. Jose-Yacaman, C. Gutierrez-Wing, M. Miki, D.Q. Yang, K.N. Piyakis, E. Sacher, J. Phys. Chem. B 109(19), 9703 (2005)

    Article  Google Scholar 

  15. Y.Q. Dai, P. Lu, Z.M. Cao, C.T. Campbell, Y.N. Xia, Chem. Soc. Rev. 47(12), 4314 (2018)

    Article  Google Scholar 

  16. E. Goudeli, S.E. Pratsinis, Aiche J. 62(2), 589 (2016)

    Article  Google Scholar 

  17. A. Cao, R. Lu, G. Veser, Phys. Chem. Chem. Phys. 12(41), 13499 (2010)

    Article  Google Scholar 

  18. C.W. Kuo, S.C. Jeng, H.L. Wang, C.C. Liao, Appl. Phys. Lett. 91(14), 141103 (2007)

    Article  ADS  Google Scholar 

  19. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Frechet, D. Poulikakos, Nanotechnology 18(34), 345202 (2007)

    Article  Google Scholar 

  20. B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Thin. Sol. Films 515(19), 7706 (2007)

    Article  ADS  Google Scholar 

  21. D. Kim, J. Moon, Electrochem Solid St 8(11), J30 (2005)

    Article  Google Scholar 

  22. B. Weber, Y. Nagata, S. Ketzetzi, F.J. Tang, W.J. Smit, H.J. Bakker, E.H.G. Backus, M. Bonn, D. Bonn, J. Phys. Chem. Lett. 9(11), 2838 (2018)

    Article  Google Scholar 

  23. X.Y. Wang, X.H. Tong, H. Zhang, J.F. Douglas, J. Chem. Phys. 147(19), 194508 (2017)

    Article  ADS  Google Scholar 

  24. H. Zhang, Y. Yang, J.F. Douglas, J. Chem. Phys. 142(8), 084704 (2015)

    Article  ADS  Google Scholar 

  25. Y. Sun, L. Zhu, K.L. Kearns, M.D. Ediger, L.A. Yu, P. Natl. Acad. Sci. USA 108(15), 5990 (2011)

    Article  ADS  Google Scholar 

  26. T. Wu, L. Yu, Pharm. Res.-Dordr. 23(10), 2350 (2006)

    Article  Google Scholar 

  27. L. Zhu, J. Jona, K. Nagapudi, T.A. Wu, Pharm. Res.-Dordr. 27(8), 1558 (2010)

    Article  Google Scholar 

  28. J. Sun, L.B. He, Y.C. Lo, T. Xu, H.C. Bi, L.T. Sun, Z. Zhang, S.X. Mao, J. Li, Nat. Mater. 13(11), 1007 (2014)

    Article  ADS  Google Scholar 

  29. C.R. Cao, K.Q. Huang, J.A. Shi, D.N. Zheng, W.H. Wang, L. Gu, H.Y. Bai, Nat. Commun. 10, 1966 (2019)

    Article  ADS  Google Scholar 

  30. M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, A.S. Brown, Nat. Mater. 15(9), 995 (2016)

    Article  ADS  Google Scholar 

  31. A. Aguado, Nat. Mater. 15(9), 931 (2016)

    Article  ADS  Google Scholar 

  32. P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Science 295(5562), 2053 (2002)

    Article  ADS  Google Scholar 

  33. M. Mikiyoshida, S. Tehuacanero, M. Joseyacaman, Surf. Sci. 274(3), L569 (1992)

    Article  Google Scholar 

  34. S. Iijima, T. Ichihashi, Phys. Rev. Lett. 56(6), 616 (1986)

    Article  ADS  Google Scholar 

  35. R.T.K. Baker, J. Catal. 78(2), 473 (1982)

    Article  Google Scholar 

  36. W. Klemperer, V. Vaida, P. Natl. Acad. Sci. USA 103(28), 10584 (2006)

    Article  ADS  Google Scholar 

  37. M. Kulmala, Science 302(5647), 1000 (2003)

    Article  Google Scholar 

  38. M.J. Molina, Angew. Chem. Int. Ed. 35(16), 1778 (1996)

    Article  Google Scholar 

  39. J.G. Dash, A.W. Rempel, J.S. Wettlaufer, Rev. Mod. Phys. 78(3), 695 (2006)

    Article  ADS  Google Scholar 

  40. J.C. Johnston, V. Molinero, J. Am. Chem. Soc. 134(15), 6650 (2012)

    Article  Google Scholar 

  41. Y.Q. Zhou, D. Vitkup, M. Karplus, J. Mol. Biol. 285(4), 1371 (1999)

    Article  Google Scholar 

  42. E.J. Haddadian, H. Zhang, K.F. Freed, J.F. Douglas, Sci. Rep. 7, 41671 (2017)

    Article  ADS  Google Scholar 

  43. L. Larini, A. Ottochian, C. De Michele, D. Leporini, Nat. Phys. 4(1), 42 (2008). (in press)

    Article  Google Scholar 

  44. A. Ottochian, D. Leporini, J. Non-Cryst. Solids 357(2), 298 (2011)

    Article  ADS  Google Scholar 

  45. B.A.P. Betancourt, P.Z. Hanakata, F.W. Starr, J.F. Douglas, P. Natl. Acad. Sci. USA 112(10), 2966 (2015)

    Article  ADS  Google Scholar 

  46. J.F. Douglas, B.A.P. Betancourt, X.H. Tong, H. Zhang, J. Stat. Mech.-Theory E 2016, 054048 (2016)

    Article  Google Scholar 

  47. H. Zhang, X.Y. Wang, J.F. Douglas, J. Chem. Phys. 151(7), 071101 (2019)

    Article  ADS  Google Scholar 

  48. R. Horstmann, M. Vogel, J. Chem. Phys. 147(3), 034505 (2017)

    Article  ADS  Google Scholar 

  49. D.S. Simmons, M.T. Cicerone, Q. Zhong, M. Tyagi, J.F. Douglas, Soft Matter 8(45), 11455 (2012)

    Article  ADS  Google Scholar 

  50. H. Zhang, C. Zhong, J.F. Douglas, X.D. Wang, Q.P. Cao, D.X. Zhang, J.Z. Jiang, J. Chem. Phys. 142(16), 164506 (2015)

    Article  ADS  Google Scholar 

  51. J. Dudowicz, K.F. Freed, J.F. Douglas, Adv. Chem. Phys. 137(137), 125 (2008)

    Google Scholar 

  52. H. Zhang, D.J. Srolovitz, J.F. Douglas, J.A. Warren, P. Natl. Acad. Sci. USA 106(19), 7735 (2009)

    Article  ADS  Google Scholar 

  53. R.A. Riggleman, J.F. Douglas, J.J. de Pablo, J. Chem. Phys. 126(23), 234903 (2007)

    Article  ADS  Google Scholar 

  54. M.E. Blodgett, T. Egami, Z. Nussinov, K.F. Kelton, Sci. Rep. 5, 13837 (2015)

    Article  ADS  Google Scholar 

  55. J.F. Douglas, D. Leporini, J. Non-Cryst. Solids 235, 137 (1998)

    Article  ADS  Google Scholar 

  56. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.M. Dmytruk, Phys. Rev. B 75(8), 085434 (2007)

    Article  ADS  Google Scholar 

  57. H. Zhang, M. Khalkhali, Q.X. Liu, J.F. Douglas, J. Chem. Phys. 138(12), 12A538 (2013)

    Article  Google Scholar 

  58. H. Zhang, X.Y. Wang, A. Chremos, J.F. Douglas, J. Chem. Phys. 150, 174506 (2019)

    Article  ADS  Google Scholar 

  59. B.M. Voronin, S.V. Volkov, J. Phys. Chem. Solids 62(7), 1349 (2001)

    Article  ADS  Google Scholar 

  60. C.A. Deng, C.A. Schuh, Phys. Rev. Lett. 106(4), 045503 (2011)

    Article  ADS  Google Scholar 

  61. W.S. Xu, J.F. Douglas, W.J. Xia, X.L. Xu, Macromolecules 53(16), 6828 (2020)

    Article  ADS  Google Scholar 

  62. W.S. Xu, J.F. Douglas, W.J. Xia, X.L. Xu, Macromolecules 53(17), 7239 (2020)

    Article  ADS  Google Scholar 

  63. W.S. Xu, J.F. Douglas, X.L. Xu, Macromolecules 53(22), 9678 (2020)

    Article  ADS  Google Scholar 

  64. F. Sausset, G. Tarjus, P. Viot, Phys. Rev. Lett. 101(15), 155701 (2008)

    Article  ADS  Google Scholar 

  65. G. Tarjus, F. Sausset, P. Viot, Adv. Chem. Phys. 148(148), 251 (2012)

    Google Scholar 

  66. Y. Chevalier, M.A. Bolzinger, Colloid Surf. A-Physicochem. Eng. Asp. 439, 23 (2013)

    Article  Google Scholar 

  67. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science 298(5595), 1006 (2002)

    Article  ADS  Google Scholar 

  68. A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299(5613), 1716 (2003)

    Article  ADS  Google Scholar 

  69. K. Stratford, R. Adhikari, I. Pagonabarraga, J.C. Desplat, M.E. Cates, Science 309(5744), 2198 (2005)

    Article  ADS  Google Scholar 

  70. Y.F. Ding, H.W. Ro, J.F. Douglas, R.L. Jones, D.R. Hine, A. Karim, C.L. Soles, Adv. Mater. 19(10), 1377 (2007)

    Article  Google Scholar 

  71. Y. Chen, Z.L. Wang, M.M. Kulkarni, X.T. Wang, A.M. Al-Enizi, A.A. Elzatahry, J.F. Douglas, A.V. Dobrynin, A. Karim, ACS Omega 3(11), 15426 (2018)

    Article  Google Scholar 

  72. S. Bhadauriya, X. T. Wang, A. Nallapaneni, A. Masud, Z. Y. Wang, J. Lee, M. Bockstaller, A. Al-Enizi, C. Camp, C. Stafford, J. F. Douglas, and A. Karim, Nano Lett to appear (2021)

  73. W.G. Zhang, H. Emamy, B.A. Pazmiño Betancourt, F. Vargas-Lara, F.W. Starr, J.F. Douglas, J. Chem. Phys. 151, 124705 (2019)

    Article  ADS  Google Scholar 

  74. A. Steltenpohl, N. Memmel, Phys. Rev. Lett. 84(8), 1728 (2000)

    Article  ADS  Google Scholar 

  75. R. Merkle, J. Maier, Z. Anorg, Allg. Chem. 631(6–7), 1163 (2005)

    Article  Google Scholar 

  76. S. Sakka, J.D. Mackenzie, J. Non-Cryst. Solids 6(2), 145 (1971)

    Article  ADS  Google Scholar 

  77. R.F. Boyer, Rubber Chem. Technol. 36(5), 1303 (1963)

    Article  Google Scholar 

  78. M. Takagi, J. Phys. Soc. Jpn. 9(3), 359 (1954)

    Article  ADS  Google Scholar 

  79. P. Buffat, J.P. Borel, Phys. Rev. A 13(6), 2287 (1976)

    Article  ADS  Google Scholar 

  80. P.R. Couchman, W.A. Jesser, Nature 269(5628), 481 (1977)

    Article  ADS  Google Scholar 

  81. Q. Jiang, S. Zhang, M. Zhao, Mater. Chem. Phys. 82(1), 225 (2003)

    Article  Google Scholar 

  82. H.M. Lu, P.Y. Li, Z.H. Cao, X.K. Meng, J. Phys. Chem. C 113(18), 7598 (2009)

    Article  Google Scholar 

  83. S. Plimpton, J. Comput. Phys. 117(1), 1 (1995)

    Article  ADS  Google Scholar 

  84. M.I. Mendelev, D.J. Sordelet, M.J. Kramer, J. Appl. Phys. 102(4), 043501 (2007)

    Article  ADS  Google Scholar 

  85. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63(22), 224106 (2001)

    Article  ADS  Google Scholar 

  86. M. Parrinello, A. Rahman, J. Appl. Phys. 52(12), 7182 (1981)

    Article  ADS  Google Scholar 

  87. S. Nose, J. Chem. Phys. 81(1), 511 (1984)

    Article  ADS  Google Scholar 

  88. W.G. Hoover, Phys. Rev. A 31(3), 1695 (1985)

    Article  ADS  Google Scholar 

  89. J. Uppenbrink, D.J. Wales, J. Chem. Phys. 98(7), 5720 (1993)

    Article  ADS  Google Scholar 

  90. E.G. Noya, J.P.K. Doye, F. Calvo, Phys. Rev. B 73(12), 125407 (2006)

    Article  ADS  Google Scholar 

  91. C.M. Neal, A.K. Starace, M.F. Jarrold, J. Am. Soc. Mass Spectrom. 18(1), 74 (2007)

    Article  Google Scholar 

  92. A. Aguado, M.F. Jarrold, in Annual Review of Physical Chemistry, Vol 62, edited by S.R. Leone, P. S. Cremer, J.T. Groves, and M.A. Johnson (Annual Reviews, Palo Alto, 2011), Vol. 62, pp. 151

  93. J.P.K. Doye, D.J. Wales, New J. Chem. 22(7), 733 (1998)

    Article  Google Scholar 

  94. E.G. Noya, J.P.K. Doye, D.J. Wales, A. Aguado, Euro. Phys. J. D 43(1–3), 57 (2007)

    Article  ADS  Google Scholar 

  95. B. Gilbert, F. Huang, H.Z. Zhang, G.A. Waychunas, J.F. Banfield, Science 305(5684), 651 (2004)

    Article  ADS  Google Scholar 

  96. N.Y. Wang, S.I. Rokhlin, D.F. Farson, Nanotechnology 19(41), 415701 (2008)

    Article  Google Scholar 

  97. B.A.P. Betancourt, F.W. Starr, J.F. Douglas, J. Chem. Phys. 148(10), 104508 (2018)

    Article  ADS  Google Scholar 

  98. A.M. Alsayed, M.F. Islam, J. Zhang, P.J. Collings, A.G. Yodh, Science 309(5738), 1207 (2005)

    Article  ADS  Google Scholar 

  99. Feuchtwa.Te, Phys. Rev. 155 (3), 731 (1967)

  100. R.F. Wallis, B.C. Clark, R. Herman, Phys. Rev. 167(3), 652 (1968)

    Article  ADS  Google Scholar 

  101. R.E. Allen, F.W. Dewette, Phys. Rev. 179(3), 873 (1969)

    Article  ADS  Google Scholar 

  102. R.E. Allen, F.W. Dewette, Phys. Rev. 179(3), 887 (1969)

    Article  ADS  Google Scholar 

  103. A.A. Maradudin, J. Melngailis, Phys. Rev. 133, A1188 (1964)

    Article  ADS  Google Scholar 

  104. W.G. Zhang, F.W. Starr, J.F. Douglas, J. Chem. Phys. 152(12), 124703 (2020)

    Article  Google Scholar 

  105. D.M. Sussman, S.S. Schoenholz, E.D. Cubuk, A.J. Liu, P. Natl. Acad. Sci. USA 114(40), 10601 (2017)

    Article  ADS  Google Scholar 

  106. P.Z. Hanakata, J.F. Douglas, F.W. Starr, Nat. Commun. 5, 4163 (2014)

    Article  ADS  Google Scholar 

  107. A.M. Molenbroek, J.W.M. Frenken, Phys. Rev. B 50(15), 11132 (1994)

    Article  ADS  Google Scholar 

  108. P. Zeppenfeld, K. Kern, R. David, G. Comsa, Phys. Rev. Lett. 62(1), 63 (1989)

    Article  ADS  Google Scholar 

  109. L. Wenzel, D. Arvanitis, H. Rabus, T. Lederer, K. Baberschke, G. Comelli, Phys. Rev. Lett. 64(15), 1765 (1990)

    Article  ADS  Google Scholar 

  110. E.A. Stern, P. Livins, Z. Zhang, Phys. Rev. B 43(11), 8850 (1991)

    Article  ADS  Google Scholar 

  111. A.I. Frenkel, J.J. Rehr, Phys. Rev. B 48(1), 585 (1993)

    Article  ADS  Google Scholar 

  112. T. Yokoyama, T. Ohta, H. Sato, Phys. Rev. B 55(17), 11320 (1997)

    Article  ADS  Google Scholar 

  113. M. Kiguchi, T. Yokoyama, D. Matsumura, H. Kondoh, O. Endo, T. Ohta, Phys. Rev. B 61(20), 14020 (2000)

    Article  ADS  Google Scholar 

  114. N. VanHung, J.J. Rehr, Phys. Rev. B 56(1), 43 (1997)

    Article  ADS  Google Scholar 

  115. T. Yokoyama, T. Ohta, Jpn. J. Appl. Phys. 29(10), 2052 (1990)

    Article  ADS  Google Scholar 

  116. N.V. Hung, T.T. Hue, H.D. Khoa, D.Q. Vuong, Phys.B-Condens. Matter 503, 174 (2016)

    Article  ADS  Google Scholar 

  117. P.C. Liu, P.R. Okamoto, N.J. Zaluzec, M. Meshii, Phys. Rev. B 60(2), 800 (1999)

    Article  ADS  Google Scholar 

  118. S.N. Luo, A. Strachan, D.C. Swift, J. Chem. Phys. 122(19), 194709 (2005)

    Article  ADS  Google Scholar 

  119. N. Van Hung, T.S. Tien, L.H. Hung, R.R. Frahm, Int. J. Mod. Phys. B 22(29), 5155 (2008)

    Article  ADS  Google Scholar 

  120. C.L. Soles, A.B. Burns, K. Ito, E. Chan, J.W. Liu, A.F. Yee, M.S. Tyagi, Macromolecules 53(15), 6672 (2020)

    Article  ADS  Google Scholar 

  121. U. Buchenau, R. Zorn, Europhys. Lett. 18(6), 523 (1992)

    Article  ADS  Google Scholar 

  122. U. Buchenau, R. Zorn, M.A. Ramos, Phys. Rev. E 90(4), 042312 (2014)

    Article  ADS  Google Scholar 

  123. D.G. Sangiovanni, J. Klarbring, D. Smirnova, N.V. Skripnyak, D. Gambino, M. Mrovec, S.I. Simak, I.A. Abrikosov, Phys. Rev. Lett. 123(10), 105501 (2019)

    Article  ADS  Google Scholar 

  124. P. Knorr, C. Herzig, J. Phys.-Condens. Matter 7(48), 9185 (1995)

    Article  ADS  Google Scholar 

  125. N.H. Nachtrieb, A.W. Lawson, J. Chem. Phys. 23(7), 1187 (1955)

    Article  ADS  Google Scholar 

  126. N.A. Gjostein, in Surfaces and interfaces I, edited by J.J. Burke, N.L. Reed, and V. Weiss (Syracuse University Press, 1967), pp. 271

  127. H.P. Bonzel, Surf. Sci. 21(1), 45 (1970)

    Article  ADS  Google Scholar 

  128. G.E. Rhead, Surf. Sci. 15(2), 353 (1969)

    Article  ADS  Google Scholar 

  129. D.A. McQuarrie, Statistical mechanics (University Science Books, Sausalito, 2000)

    MATH  Google Scholar 

Download references

Acknowledgements

G.M. and H.Z. gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada under the Discovery Grant Program (RGPIN-2017-03814) and Accelerator Supplements (RGPAS-2017- 507975).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Zhang or Jack F. Douglas.

Ethics declarations

Author contribution statement

H. Z. and J.F.D. developed the idea and designed the simulation. G.M. performed MD simulations. G.M., H.Z. and J.F.D. analyzed the data. G.M., H.Z. and J.F.D. wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, G., Zhang, H. & Douglas, J.F. Localization model description of the interfacial dynamics of crystalline Cu and \(\hbox {Cu}_{64}\hbox {Zr}_{36}\) metallic glass nanoparticles. Eur. Phys. J. E 44, 33 (2021). https://doi.org/10.1140/epje/s10189-021-00022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00022-z

Navigation