Skip to main content
Log in

Numerical simulation of dip-coating in the evaporative regime

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A hydrodynamic model is used for numerical simulations of a polymer solution in a dip-coating-like experiment. We focus on the regime of small capillary numbers where the liquid flow is driven by evaporation, in contrast to the well-known Landau-Levich regime dominated by viscous forces. Lubrication approximation is used to describe the flow in the liquid phase. Evaporation in stagnant air is considered (diffusion-limited evaporation), which results in a coupling between liquid and gas phases. Self-patterning due to the solutal Marangoni effect is observed for some ranges of the control parameters. We first investigate the effect of evaporation rate on the deposit morphology. Then the role of the spatial variations in the evaporative flux on the wavelength and mean thickness of the dried deposit is ascertained, by comparing the 2D and 1D diffusion models for the gas phase. Finally, for the very low substrate velocities, we discuss the relative importance of diffusive and advective components of the polymer flux, and consequences on the choice of the boundary conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Han, Z. Lin, Angew. Chem. Int. Ed. 51, 1534 (2012)

    Article  Google Scholar 

  2. R.G. Larson, Aiche J. 60, 1538 (2014)

    Article  Google Scholar 

  3. U. Thiele, Adv. Colloid Interface Sci. 206, 399 (2014)

    Article  Google Scholar 

  4. L. Li, M.H. Köpf, S.V. Gurevich, R. Friedrich, L. Chi, Small 8, 488 (2012)

    Article  Google Scholar 

  5. L. Landau, B. Levich, Acta Physicochem. USSR 17, 42 (1942)

    Google Scholar 

  6. D. Quéré, A. de Ryck, Ann. Phys. (Paris) 23, 1 (1998)

    ADS  Google Scholar 

  7. A.S. Dimitrov, K. Nagayama, Langmuir 12, 1303 (1996)

    Article  Google Scholar 

  8. G. Berteloot, C.-T. Pham, A. Daerr, F. Lequeux, L. Limat, EPL 83, 14003 (2008)

    Article  ADS  Google Scholar 

  9. M. Le Berre, Y. Chen, D. Baigl, Langmuir 25, 2554 (2009)

    Article  Google Scholar 

  10. G. Jing, H. Bodiguel, F. Doumenc, B. Guerrier, Langmuir 26, 2288 (2010)

    Article  Google Scholar 

  11. D. Grosso, J. Mater. Chem. 21, 17033 (2011)

    Article  Google Scholar 

  12. G. Berteloot, A. Daerr, F. Lequeux, L. Limat, Chem. Eng. Proc.: Proc. Int. 68, 69 (2013)

    Article  Google Scholar 

  13. L. Frastia, A.J. Archer, U. Thiele, Soft Matter 8, 11363 (2012)

    Article  ADS  Google Scholar 

  14. M.R.E. Warner, R.V. Craster, O.K. Matar, J. Colloid Interface Sci. 267, 92 (2003)

    Article  Google Scholar 

  15. L. Frastia, A.J. Archer, U. Thiele, Phys. Rev. Lett. 106, 077801 (2011)

    Article  ADS  Google Scholar 

  16. R.V. Craster, O.K. Matar, K. Sefiane, Langmuir 25, 3601 (2009)

    Article  Google Scholar 

  17. M.H. Köpf, S.V. Gurevich, R. Friedrich, L. Chi, Langmuir 26, 10444 (2010)

    Article  Google Scholar 

  18. F. Doumenc, B. Guerrier, Europhys. Lett. 103, 14001 (2013)

    Article  ADS  Google Scholar 

  19. A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)

    Article  ADS  Google Scholar 

  20. R. Ober, L. Paz, C. Taupin, P. Pincus, S. Boileau, Macromolecules 16, 50 (1983)

    Article  ADS  Google Scholar 

  21. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Article  ADS  Google Scholar 

  22. V.M. Starov, M.G. Velarde, J. Phys.: Condens. Matter 21, 464121 (2009)

    ADS  Google Scholar 

  23. J.M. Zilinski, Macromolecules 29, 6044 (1996)

    Article  ADS  Google Scholar 

  24. U. Thiele, D.V. Todorova, H. Lopez, Phys. Rev. Lett. 111, 117801 (2013)

    Article  ADS  Google Scholar 

  25. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953)

  26. J. Eggers, L.M. Pismen, Phys. Fluids 22, 112101 (2010)

    Article  ADS  Google Scholar 

  27. G. Barnes, Colloid Interface Sci. 25, 89 (1986)

    Article  Google Scholar 

  28. F. Doumenc, B. Guerrier, Langmuir 26, 13959 (2010)

    Article  Google Scholar 

  29. J.E. Mark, Polymer Data Handbook (Oxford University Press, New York, 1999)

  30. Y. Marcus, The Properties of Solvents (John Wiley and sons, Chichester, 1998)

  31. F. Doumenc, B. Guerrier, C. Allain, J. Chem. Eng. Data 50, 983 (2005)

    Article  Google Scholar 

  32. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  33. C. Poulard, P. Damman, EPL 80, 64001 (2007)

    Article  ADS  Google Scholar 

  34. A.M. Cazabat, P. Carles, MRS Proc. 248, 519 (1991)

    Article  Google Scholar 

  35. M.H. Kőpf, U. Thiele, Nonlinearity 27, 2711 (2014)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Doumenc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, M., Doumenc, F. & Guerrier, B. Numerical simulation of dip-coating in the evaporative regime. Eur. Phys. J. E 39, 19 (2016). https://doi.org/10.1140/epje/i2016-16019-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16019-4

Keywords

Navigation