Skip to main content
Log in

Wave-particle interaction in the Faraday waves

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity \(\left\langle {\tilde u_{osc} } \right\rangle _{rms}\) of oscillons is directly related to the turbulent r.m.s. velocity \(\left\langle {\tilde u_{rms} } \right\rangle\) of the fluid particles in a broad range of vertical accelerations. The measured \(\left\langle {\tilde u_{osc} } \right\rangle _{rms}\) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Faraday, Philos. Trans. R. Soc. London 121, 319 (1831).

    Google Scholar 

  2. A. Kudrolli, J.P. Gollub, Physica D 97, 133 (1996).

    Article  ADS  Google Scholar 

  3. D.I. Goldman, M.D. Shattuck, Sung Joon Moon, J.B. Swift, H.L. Swinney, Phys. Rev. Lett. 90, 104302 (2003).

    Article  ADS  Google Scholar 

  4. A.V. Kityk, J. Embs, V.V. Mekhonoshin, C. Wagner, Phys. Rev. E 72, 036209 (2005).

    Article  ADS  Google Scholar 

  5. I. Shani, G. Cohen, J. Fineberg, Phys. Rev. Lett. 104, 184507 (2010).

    Article  ADS  Google Scholar 

  6. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  7. P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1986).

    Article  ADS  Google Scholar 

  8. J. Wu, R. Keolian, I. Rudnick, Phys. Rev. Lett. 52, 1421 (1984).

    Article  ADS  Google Scholar 

  9. O. Lioubashevski, H. Arbell, J. Fineberg, Phys. Rev. Lett. 76, 3959 (1996).

    Article  ADS  Google Scholar 

  10. O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, J. Fineberg, Phys. Rev. Lett. 83, 3190 (1999).

    Article  ADS  Google Scholar 

  11. H. Arbell, J. Fineberg, Phys. Rev. Lett. 81, 4384 (1998).

    Article  ADS  Google Scholar 

  12. J. Rajchenbach, A. Leroux, D. Clamond, Phys. Rev. Lett. 107, 024502 (2011).

    Article  ADS  Google Scholar 

  13. M. Shats, H. Xia, H. Punzmann, Phys. Rev. Lett. 108, 034502 (2012).

    Article  ADS  Google Scholar 

  14. H. Xia, T. Maimbourg, H. Punzmann, M. Shats, Phys. Rev. Lett. 109, 114502 (2012).

    Article  ADS  Google Scholar 

  15. A. von Kameke, F. Huhn, G. Fernández-García, A.P. Muñuzuri, V. Pérez-Muñuzuri, Phys. Rev. Lett. 107, 074502 (2011).

    Article  ADS  Google Scholar 

  16. N. Francois, H. Xia, H. Punzmann, M. Shats, Phys. Rev. Lett. 110, 194501 (2013).

    Article  ADS  Google Scholar 

  17. N. Francois, H. Xia, H. Punzmann, M. Shats, Phys. Rev. X 4, 021021 (2014).

    Google Scholar 

  18. R. Kraichnan, Phys. Fluids 10, 1417 (1967).

    Article  ADS  Google Scholar 

  19. H. Xia, N. Francois, H. Punzmann, M. Shats, Nat. Commun. 4, 2013 (2013) DOI:10.1038/ncomms3013.

    ADS  Google Scholar 

  20. H. Xia, N. Francois, H. Punzmann, M. Shats, Phys. Rev. Lett. 112, 104501 (2014).

    Article  ADS  Google Scholar 

  21. G.I. Taylor, Proc. London Math. Soc. 20, 196 (1921).

    MATH  Google Scholar 

  22. D. Snouck, M.-T. Westra, W. van de Water, Phys. Fluids 21, 025102 (2009).

    Article  ADS  Google Scholar 

  23. H. Punzmann, M. Shats, H. Xia, Phys. Rev. Lett. 103, 064502 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shats.

Additional information

Contribution to the Topical Issue “Multi-scale phenomena in complex flows and flowing matter” edited by Luca Biferale, Massimo Cencini, Alessandra Lanotte and Mauro Sbragaglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francois, N., Xia, H., Punzmann, H. et al. Wave-particle interaction in the Faraday waves. Eur. Phys. J. E 38, 106 (2015). https://doi.org/10.1140/epje/i2015-15106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15106-4

Keywords

Navigation