Skip to main content
Log in

A change in boundary conditions induces a discontinuity of tissue flow in chicken embryos and the formation of the cephalic fold

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The morphogenesis of vertebrate body parts remains an open question. It is not clear whether the existence of different structures, such as a head, can be addressed by fundamental laws of tissue movement and deformation, or whether they are only a sequence of stop-and-go genetic instructions. I have filmed by time-lapse microscopy the formation of the presumptive head territory in chicken embryos. I show that the early lateral evagination of the eye cups and of the mesencephalic plate is a consequence of a sudden change in boundary conditions of the initial cell flow occurring in these embryos. Due to tissue flow, and collision of the two halves of the embryo, the tissue sheet movement is first dipolar, and next quadrupolar. In vivo air puff tonometry reveals a simple visco-elastic behaviour of the living material. The jump from a dipolar to a quadrupolar flow changes the topology of the early morphogenetic field which is observed towards a complex vortex winding with a trail (the eye cups and brain folds). The hydrodynamical model accounts for the discontinuity of the vector field at the moment of collision of the left and right halves of the embryo, at a quantitative level. This suggests a possible mechanism for the morphogenesis of the head of amniotes, as compared to cephalochordates and anamniotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Holtfreter, J. Exp. Zoology 95, 171 (1944).

    Article  Google Scholar 

  2. H.M. Phillips, Amer. Zool. 18, 81 (1978).

    Google Scholar 

  3. D.E. Ingberg, Int. J. Dev. Biol. 50, 255 (2006).

    Article  Google Scholar 

  4. J.C. Gerhardt, M. Danilchik, T. Doniach, S. Roberts, B. Rowning, R. Stewart, Development 107, 37 (1989).

    Google Scholar 

  5. W. Wilson, N.J.B. Driessen, R.C.C. van Donkelaar, K. Ito, OsteoArthritis and Cartilage 14, 1196 (2006).

    Article  Google Scholar 

  6. V. Fleury, Phys. Rev. E 61, 4156 (2000).

    Article  ADS  Google Scholar 

  7. E. Farge, Curr. Biol. 13, 1365 (2003).

    Article  Google Scholar 

  8. M. Unbekandt, P.M. Del Moral, F. Sala, S. Bellusci, D. Warburton, V. Fleury, Mech. Dev. 125, 314 (2008).

    Article  Google Scholar 

  9. A.E.X. Brown, D.E. Discher, Curr. Biol. 19, R781 (2009).

    Article  Google Scholar 

  10. M. Chuai, C. Weijer, Hum. Front. Sci. Program J 3, 71 (2009).

    Google Scholar 

  11. E.A. Zamir, B.J. Rongish, C.D. Little, PLoS Biol. 6, e247 (2008).

    Article  Google Scholar 

  12. P. Frield, K. Wolf, J. Cell. Biol. 188, 11 (2009).

    Google Scholar 

  13. A.S. Romer, R.S. Parsons, The Vertebrate Body (Saunders College Pub., Philadelphia, 1986).

  14. M. Callebaut, E. Van Nueten, H.Bortier, F. Harrisson, J. Morphol. 255, 315 (2003).

    Article  Google Scholar 

  15. R. Wetzel, Vehr. physik.-med. Ges. Würzburg 40, H.5 (1924).

    Google Scholar 

  16. R. Ladher, G.C. Schoenwolf, Making a Neural Tube, Developmental Neurobiology, edited by M. Jacobson, M.S. Rao (Springer, Berlin, 2004).

  17. K. Shariff, A.A. Leonard, Annu. Rev. Fluid. Mech. 24, 235 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  18. V. Fleury, Organogenesis 2, 1 (2005).

    Article  Google Scholar 

  19. V. Fleury, O.P. Boryskina, A.J.M. Cornelissen, T.-H. Nguyen, M. Unbekandt, L. Leroy, G. Baffet, F. le Noble, O. Sire, E. Lahaye, V. Burgaud, Phys. Rev. E 81, 021920 (2010).

    Article  ADS  Google Scholar 

  20. N. Rohani, L. Canty, O. Luu, F. Fagotto, R. Winklbauer, PLoS Biol. 9, e1000597 (2011) doi:10.1371/journal.pbio.1000597

    Article  Google Scholar 

  21. V. Fleury, Eur. Phys. J., A.P. 45, 30101 (2009).

    Article  Google Scholar 

  22. P.A. Pouille, E. Farge, Phys. Biol. 5, 15005 (2008).

    Article  ADS  Google Scholar 

  23. S.R. Yu, M. Burkhardt, M. Nowak, J. Ries, Z. Petrasek, S. Scholpp, P. Schwille, M. Brand, Nature 461, 533 (2009).

    Article  ADS  Google Scholar 

  24. S.C. Morris, The Crucible of Creation: The Burgess Shale and the Rise of Animals (Oxford University Press, New York, 1998).

  25. C. Darwin, On the origin of Species by means of natural selection or the preservation of favoured races in the struggle for life (1859).

  26. K. Schugart, C. Kappen, F.H. Ruddle, Proc. Natl. Acad. Sci. U.S.A. 86, 7067 (1989).

    Article  ADS  Google Scholar 

  27. F. Marlow, F. Zwartkruis, J. Malicki, S.C.F. Neuhauss, L. Abbas, M. Weaver, W. Driever, L. Solnica-Krezel, Dev. Biol. 203, 382 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Fleury.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleury, V. A change in boundary conditions induces a discontinuity of tissue flow in chicken embryos and the formation of the cephalic fold. Eur. Phys. J. E 34, 73 (2011). https://doi.org/10.1140/epje/i2011-11073-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11073-0

Keywords

Navigation