Skip to main content
Log in

Physics of RNA and viral assembly

  • Focus Point
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The overview discusses the application of physical arguments to structure and function of single-stranded viral RNA genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.S. Baker, N.H. Olson, S.D. Fuller, Microbiol. Mol. Biol. Rev. 63, 862 (1999).

    Google Scholar 

  2. R.G. Webster, A. Granoff, Encyclopedia of Virology Plus CD-ROM (Academic Press, 1995).

  3. C.K. Biebricher, M. Eigen, J. McCaskill, J. Mol. Biol. 231, 175 (1993).

    Article  Google Scholar 

  4. P.P. Hung, C.M. Ling, L.R. Overby, Science 166, 1638 (1969).

    ADS  Google Scholar 

  5. J. Johnson, R. Rueckert, in Structural Biology of Viruses, edited by Wah Chiu, Roger M. Burnett, Robert L. Garcea (Oxford University Press, New York, 1997).

  6. Not only do small RNA viruses have nucleotide densities that are comparable to that of crystalline RNA, but there are examples where the nucleotide density even exceeds that of crystalline RNA, such as the Rhinovirus which has a packing density of 1.69 cubic angstrom per dalton.

  7. H. Tsuruta, V.S. Reddy, W.R. Wikoff, J.E. Johnson, J. Mol. Biol. 284, 1439 (1998).

    Article  Google Scholar 

  8. T. Li, Z. Chen, J.E. Johnson, G.J. Thomas, Biochemistry 131, 6673 (1992).

    Article  Google Scholar 

  9. G. Ribitsch, R. De Clercq, W. Folkhard, P. Zipper, J. Schurz, J. Clauwaert, Z. Naturforsch. C 40, 234 (1985).

    Google Scholar 

  10. M. Zuker, Nucleic Acids Res. 31, 3406 (2003).

    Article  Google Scholar 

  11. J. Rudnick, R. Bruinsma, Phys. Rev. Lett. 94, 038101 (2005).

    Article  ADS  Google Scholar 

  12. L. Tang, K.N. Johnson, L.A. Ball, T. Lin, M. Yeager, J.E. Johnson, Nature Struct. Biol. 8, 77 (2001).

    Article  Google Scholar 

  13. D.C. Rau, V.A. Parsegian, Biophys. J. 61, 246 (1992).

    Google Scholar 

  14. For a review see W. Gelbart, R. Bruinsma, P. Pincus, V.A. Parsegian, Phys. Today, September (2000) p. 38.

  15. A. Evilevitch, L. Lavelle, C.M. Knobler, E. Raspaud, W.M. Gelbart, Proc. Natl. Acad. Sci. U.S.A. 100, 9292 (2003).

    Article  ADS  Google Scholar 

  16. C. Knobler, private communication.

  17. D.E. Smith, S.J. Tans, S.B. Smith, S. Grimes, D.L. Anderson, C. Bustamante, Nature 413, 748 (2001).

    Article  ADS  Google Scholar 

  18. J.A. Speir, Structure 3, 63 (1995).

    Article  Google Scholar 

  19. Actually, the edges of the dodecahedral cage in Figure fig:6 are low-curvature borders between the pyramids.

  20. K.W. Adolph, P.J. Butler, Philos. Trans. R. Soc. London, Ser. B 276, 113 (1976).

    Google Scholar 

  21. J. Johnson, J. Tang, Y. Nyame, D. Willits, M. Young, A. Zlotnick, Nano Lett. 5, 765 (2005).

    Article  Google Scholar 

  22. P. van der Schoot, R. Bruinsma, Phys. Rev. E 71, 061928 (2005).

    Article  ADS  Google Scholar 

  23. F. von Goeler, M. Muthukumar, J. Chem. Phys. 100, 7796 (1994).

    Article  ADS  Google Scholar 

  24. The physical meaning of the negative slope for $\langle\phi \rangle$ less than $\langle\phi \rangle^*$ in terms of the pressure is that, for $\xi$ less than $R$, the Gibbs free energy scales as the surface area of the shell. By Laplace's Law, this effective negative surface tension indeed should produce a negative pressure. However, in reality, the negative tension produced by the polymer adsorption is exactly cancelled by repulsion between the capsid proteins leading to a zero total surface tension (as in the Shulman criterion for surfactant bilayers). The actual pressure is thus zero for $\langle\phi\rangle$ less than $\langle\phi\rangle^*$. For $\xi$ greater than $R$, the Gibbs free energy no longer scales as the surface area and the capsid wall develops a true tension.

  25. J. Day, Y.G. Kuznetsov, S.B. Larson, A. Greenwood, A. McPherson, Biophys. J. 80, 2364 (2001).

    Article  Google Scholar 

  26. K.N. Johnson, L. Tang, J.E. Johnson, L.A. Ball, J. Virol. 78, 11371 (2004).

    Article  Google Scholar 

  27. C.M. Ling, P.P. Hung, L.R. Overby, Virology 40, 920 (1970).

    Article  Google Scholar 

  28. A. Klug, Philos. Trans. R. Soc. London, Ser. B 354, 531 (1999).

    Google Scholar 

  29. M.H. Kolk, M. van der Graaf, S.S. Wijmenga, C.W. Pleij, H.A. Heus, C.W. Hilbers, Science 280, 434 (1998).

    Article  ADS  Google Scholar 

  30. P. Annamalai, A.L. Rao, Virology 332, 650 (2005).

    Article  Google Scholar 

  31. A. Zlotnick, J. Mol. Biol. 59, 241 (1994).

    Google Scholar 

  32. R. Bundschuh, T. Hwa, Phys. Rev. Lett. 83, 1479 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Bruinsma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruinsma, R.F. Physics of RNA and viral assembly. Eur. Phys. J. E 19, 303–310 (2006). https://doi.org/10.1140/epje/i2005-10071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10071-1

PACS.

Navigation