Skip to main content
Log in

Tight and loose shapes in flat entangled dense polymers

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate the effects of topological constraints (entanglements) on two-dimensional polymer loops in the dense phase, and at the collapse transition (\(\Theta\)-point). Previous studies have shown that in the dilute phase the entangled region becomes tight, and is thus localised on a small portion of the polymer. We find that the entropic force favouring tightness is considerably weaker in dense polymers. While the simple figure-eight structure, created by a single crossing in the polymer loop, localises weakly, the trefoil knot and all other prime knots are loosely spread out over the entire chain. In both the dense and \(\Theta\) conditions, the uncontracted-knot configuration is the most likely shape within a scaling analysis. By contrast, a strongly localised figure-eight is the most likely shape for dilute prime knots. Our findings are compared to recent simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

  2. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).

  3. J.D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1970).

  4. L.R.G. Treloar, The Physics of Rubber Elasticity (Clarendon Press, Oxford, 1975).

  5. J.P. Sauvage, C. Dietrich-Buchecker (Editors), Catenanes, Rotaxanes, and Knots (VCH, Weilheim, 1999).

  6. T.E. Creighton, Proteins: Structures and Molecular Properties\/ (W.H. Freeman, New York, 1993).

  7. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland, New York, 2002).

  8. V.V. Rybenkov, Science 277, 690 (1997)

    Article  Google Scholar 

  9. W.E. Moerner, M. Orrit, Science 283, 1670 (1999)

    Article  ADS  Google Scholar 

  10. A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, R.M. Simmons, Science 283, 1689 (1999)

    Article  ADS  Google Scholar 

  11. Throughout this paper we employ the terms “2D knot,” “2D knot projection,” and “2D network” to denote a polymer chain confined to two dimensions, which never intersects itself apart from explicitly imposed “crossings” (or “vertices”). The chain segments adjoining the crossings are allowed to exchange length with one another. Also the slip-linked structures considered in Sections 3 and 4 belong to this class of systems, as their equilibrium behaviour is the same. The strict non-crossing condition is relaxed only briefly near the end of Appendix A, where we consider the 2D Goldstone phase introduced in reference [28].

  12. E. Guitter, E. Orlandini, J. Phys. A 32, 1359 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Metzler, A. Hanke, P.G. Dommersnes, Y. Kantor, M. Kardar, Phys. Rev. Lett. 88, 188101 (2002).

    Article  ADS  Google Scholar 

  14. B. Duplantier, Phys. Rev. Lett. 57, 941 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  15. K. Ohno, K. Binder, J. Phys. (Paris) 49, 1329 (1988)

    Article  MathSciNet  Google Scholar 

  16. M.B. Hastings, Z.A. Daya, E. Ben-Naim, R.E. Ecke, Phys. Rev. E 66, 025102 (2002).

    Article  ADS  Google Scholar 

  17. B. Maier, J.O. Rädler, Phys. Rev. Lett. 82, 1911 (1999)

    Article  ADS  Google Scholar 

  18. A.Yu. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994).

  19. J.D. Moroz, R.D. Kamien, Nucl. Phys. B 506, 695 (1997)

    Article  ADS  Google Scholar 

  20. E.J. Janse van Rensburg, S.G. Whittington, J. Phys. A 24, 3935 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Metzler, A. Hanke, P.G. Dommersnes, Y. Kantor, M. Kardar, Phys. Rev. E 65, 061103 (2002).

    Article  ADS  Google Scholar 

  22. S.R. Quake, Phys. Rev. Lett. 73, 3317 (1994)

    Article  ADS  Google Scholar 

  23. V.A. Bloomfield, Biopolymers 44, 269 (1997)

    Article  Google Scholar 

  24. T. Garel, Remarks on homo- and hetero-polymeric aspects of protein folding\/, cond-mat/0305053.

  25. B. Duplantier, J. Phys. A 19, L1009 (1986).

  26. B. Duplantier, H. Saleur, Nucl. Phys. B 290, 291 (1987).

    Article  ADS  Google Scholar 

  27. A.L. Owczarek, T. Prellberg, R. Brak, Phys. Rev. Lett. 70, 951 (1993)

    Article  ADS  Google Scholar 

  28. J.L. Jacobsen, N. Read, H. Saleur, Phys. Rev. Lett. 90, 090601 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  29. B. Duplantier, F. David, J. Stat. Phys. 51, 327 (1988).

    Article  ADS  Google Scholar 

  30. J. Kondev, J.L. Jacobsen, Phys. Rev. Lett. 81, 2922 (1998).

    Article  ADS  Google Scholar 

  31. M.E. Fisher, Physica D 38, 112 (1989).

    Article  ADS  Google Scholar 

  32. E. Orlandini, F. Seno, A.L. Stella, M.C. Tesi, Phys. Rev. Lett. 68, 488 (1992)

    Article  ADS  Google Scholar 

  33. J. Cardy, J. Phys. A 34, L665 (2001).

  34. E. Orlandini, A.L. Stella, C. Vanderzande, Phys. Rev. E 68, 031804 (2003).

    Article  ADS  Google Scholar 

  35. B. Duplantier, H. Saleur, Phys. Rev. Lett. 59, 539 (1987).

    Article  ADS  Google Scholar 

  36. P. Grassberger, R. Hegger, Ann. Phys. (Leipzig) 4, 230 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hanke.

Additional information

Received: 7 October 2003, Published online: 21 November 2003

PACS:

87.15.-v Biomolecules: structure and physical properties - 82.35.-x Polymers: properties; reactions; polymerization - 02.10.Kn Knot theory

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanke, A., Metzler, R., Dommersnes, P.G. et al. Tight and loose shapes in flat entangled dense polymers. Eur. Phys. J. E 12, 347–354 (2003). https://doi.org/10.1140/epje/i2003-10067-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10067-9

Keywords

Navigation