Skip to main content
Log in

Boolean versus continuous dynamics in modules with two feedback loops

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigate the dynamical behavior of simple networks, namely loops with an additional internal regulating connection. Continuous dynamics for mRNA and protein concentrations is compared to a Boolean model for gene activity. Using a generalized method and within a single framework, we study different continuous models and different types of regulatory functions, and establish conditions under which the system can display stable oscillations or stable fixed points. These conditions depend only on general features such as the degree of cooperativity of the regulating interactions and the logical structure of the interactions. There are no simple rules for deciding when Boolean and continuous dynamics agree with each other, but we identify several relevant criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Del Vecchio, E.D. Sontag, Proceedings of Americal Control Conference (New York, 2007).

  2. U. Alon, An Introduction to Systems Biology (Chapman & Hall/CRC, 2007).

  3. M.B. Elowitz, S. Leibler, Nature 403, 335 (2000) DOI:10.1038/35002125.

    Article  ADS  Google Scholar 

  4. S.A. Kauffman, J. Theor. Biol. 22, 437 (1969).

    Article  MathSciNet  Google Scholar 

  5. R. Thomas, J. Theor. Biol. 42, 563 (1973) DOI:10.1016/0022-5193(73)90247-6.

    Article  Google Scholar 

  6. S. Bornholdt, Science 310, 449 (2005) DOI:10.1126/science.1119959.

    Article  Google Scholar 

  7. P. Smolen, D.A. Baxter, J.H. Byrne, Bull. Math. Biol. 61, 247 (2000) DOI:10.1006/bulm.1999.0155.

    Article  Google Scholar 

  8. H. De Jong, J. Comput. Biol. 9, 67 (2002).

    Article  Google Scholar 

  9. G. Karlebach et al., Nat. Rev. Mol. Cell Biol. 9, 770 (2008) DOI:10.1038/nrm2503.

    Article  Google Scholar 

  10. F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, Proc. Natl. Acad. Sci. U.S.A. 101, 4781 (2004) DOI:10.1073/pnas.0305937101.

    Article  ADS  Google Scholar 

  11. S. Braunewell, S. Bornholdt, J. Theor. Biol. 245, 638 (2007) DOI:10.1016/j.jtbi.2006.11.012.

    Article  MathSciNet  Google Scholar 

  12. E. Gehrmann, B. Drossel, Phys. Rev. E 82, 046120 (2010) DOI:10.1103/PhysRevE.82.046120.

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Norrell, B. Samuelsson, J.E.S. Socolar, Phys. Rev. E 76, 046122 (2007) DOI:10.1103/PhysRevE.76.046122.

    Article  ADS  Google Scholar 

  14. J. Norrell, J.E.S. Socolar, Phys. Rev. E 79, 061908 (2009) DOI:10.1103/PhysRevE.79.061908.

    Article  ADS  Google Scholar 

  15. A. Mochizuki, J. Theor. Biol. 236, 291 (2005) DOI:10.1016/j.jtbi.2005.03.015.

    Article  MathSciNet  Google Scholar 

  16. O. Brandman et al., Science 322, 390 (2008) DOI:10.1126/science.1160617.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. H.G. Othmer, J. Math. Biol. 3, 53 (1976) DOI:10.1007/BF00307858.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Angeli et al., Proc. Natl. Acad. Sci. U.S.A. 101, 1822 (2004) DOI:10.1073/pnas.0308265100.

    Article  ADS  Google Scholar 

  19. S. Pigolotti et al., Proc. Natl. Acad. Sci. U.S.A. 104, 6533 (2007) DOI:10.1073/pnas.0610759104.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. R. Wilds et al., Phys. Rev. E 80, 062902 (2009) DOI:10.1103/PhysRevE.80.062902.

    Article  ADS  Google Scholar 

  21. M.H. Jensen et al., Eur. Phys. J. ST 178, 45 (2009) DOI:10.1140/epjst/e2010-01181-7.

    Article  Google Scholar 

  22. J.-R. Kim et al., Biophys. J. 94, 359 (2008).

    Article  ADS  Google Scholar 

  23. W. Li et al., J. Theor. Biol. 37, 205 (2012) DOI:10.1016/j.jtbi.2012.04.011.

    Article  Google Scholar 

  24. T. Gross, U. Feudel, Phys. Rev. E 73, 016205 (2006) DOI:10.1103/PhysRevE.73.016205.

    Article  ADS  Google Scholar 

  25. A. Leite et al., Math. Biosci. Engin. 7, 83 (2010) DOI:10.3934/mbe.2010.7.83.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Chen, H.L. He, G.M. Church, Pacific Symp. Biocomput. 4, 29 (1999).

    Google Scholar 

  27. G. Yagil, E. Yagil, Biophys. J. 11, 11 (1971).

    Article  ADS  Google Scholar 

  28. A.V. Hill, J. Physiol. 40, iv (1910).

    Google Scholar 

  29. S.R. Veflingstag et al., Biosystems. 90, 323 (2007) DOI:10.1016/j.biosystems.2006.09.036.

    Article  Google Scholar 

  30. S. Widder, J. Schicho, P. Schuster, J. Theor. Biol. 246, 395 (2007) DOI:10.1016/j.jtbi.2007.01.004.

    Article  MathSciNet  Google Scholar 

  31. Y. Setty, A.E. Mayo, M.G. Surette, U. Alon, Proc. Natl. Acad. Sci. U.S.A. 100, 7702 (2003) DOI:10.1073/pnas.1230759100.

    Article  ADS  Google Scholar 

  32. D. Wittmann, J. Krumsiek, J. Saez-Rodriguez, D.A. Lauffenburger, S. Klamt, F. Theis, BMC Syst. Biol. 3, 98 (2009) DOI:10.1186/1752-0509-3-98.

    Article  Google Scholar 

  33. T. Gross, Population dynamics: General results from local analysis (Der Andere Verlag, Tönning, 2004).

  34. T. Gross, U. Feudel, Ocean Dyn. 59, 417 (2009).

    Article  ADS  Google Scholar 

  35. R. Steuer, T. Gross, J. Selbig, B. Blasius, Proc. Natl. Acad. Sci. U.S.A. 103, 11868 (2006) DOI:10.1073/pnas.0600013103.

    Article  ADS  Google Scholar 

  36. R. Steuer, A. Nunes Nesi, A.R. Fernie, T. Gross, B. Blasius, J. Selbig, Bioinformatics 23, 1378 (2007) DOI:10.1093/bioinformatics/btm065.

    Article  Google Scholar 

  37. V. Kaufman, B. Drossel, Eur. Phys. J. B 43, 115 (2005) DOI:10.1140/epjb/e2005-00034-6.

    Article  ADS  Google Scholar 

  38. F. Greil, B. Drossel, Phys. Rev. Lett. 95, 048701 (2005) DOI:10.1103/PhysRevLett.95.048701.

    Article  ADS  Google Scholar 

  39. M. Jenista, Dissertation Duke University (2010).

  40. L. Glass, S. Kauffman, J. Theor. Biol. 39, 103 (1973) DOI:10.1016/0022-5193(72)90157-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Ackermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackermann, E., Weiel, E.M., Pfaff, T. et al. Boolean versus continuous dynamics in modules with two feedback loops. Eur. Phys. J. E 35, 107 (2012). https://doi.org/10.1140/epje/i2012-12107-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12107-9

Keywords

Navigation