Skip to main content
Log in

Analysis of emission properties of intermixed InGaN/GaN quantum wells using a concentration-dependent interdiffusion model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Intermixing phenomenon that occurs in quantum structures offers an effective way to manipulate the energy bandgap profile of emitting materials. In this paper, a numerical analysis of the concentration-dependent indium interdiffusion in InGaN/GaN quantum-disk-in-nanowires light-emitting devices is presented. The numerical model couples the concentration-dependent interdiffusion equations to Schrödinger’s equation to determine the effect of intermixing process on emission properties of single and double quantum well structures. The details of the developed Finite Difference Time Domain (FDTD) solution algorithm and its stability analysis are presented. The main model parameters are calibrated using experimental data. Simulation results show that, consistent with experimental observations, longer annealing times or higher annealing temperatures result in progressive blue shifts in the eigen-energies with strong dependence on indium concentration profile. This simulation tool provides invaluable insight into the intermixing process and helps in device design procedures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.S. Ooi, S.G. Ayling, A.C. Bryce, J.H. Marsh, IEEE Photonics Technol. Lett. 7, 944 (1996)

    Article  ADS  Google Scholar 

  2. E.H. Li, in Semiconductor quantum well intermixing (Gordon and Breach Science, 2000), Vol. 8

  3. J. Marsh, Laser Tech. J. 4, 32 (2007)

    Article  Google Scholar 

  4. L.V. Dao, M. Gal, C. Carmody, H.H. Tan, C. Jagadish, J. Appl. Phys. 88, 5252 (2000)

    Article  ADS  Google Scholar 

  5. M.D. McCluskey, L.T. Romano, B.S. Krusor, N.M. Johnson, Appl. Phys. Lett 73, 1281 (1998)

    Article  ADS  Google Scholar 

  6. D.A. May-Arrioja, N. Bickel, A. Alejo-Molina, M. Torres-Cisneros, Microelectron. J. 40, 574 (2009)

    Article  Google Scholar 

  7. T. Lin, R.G. Chen, H.Q. Zhang, C. Li, X.J. Ma, Mater. Sci. Semicond. Process. 16, 738 (2013)

    Article  Google Scholar 

  8. C.-C. Chuo, C.-M. Lee, J.-I. Chyi, Appl. Phys. Lett. 78, 314 (2001)

    Article  ADS  Google Scholar 

  9. K. Mukai, M. Sugawara, S. Yamazaki, Phys. Rev. B: Condens. Matter 50, 2273 (1994)

    Article  ADS  Google Scholar 

  10. S. Karimi-Ashtiani, C.-C. Jay Kuo, Quantification of self-diffusion process in brain white matter tracts via numerical pde simulation, in IEEE ISBI (IEEE, 2010), p. 1179

  11. X. Tian, A.J. Strojwas, IEEE Trans. Comput. Aided Des. 10, 1110 (1991)

    Article  Google Scholar 

  12. D.T.-K. Kwok, IEEE Trans. Plasma Sci. 35, 670 (2007)

    Article  ADS  Google Scholar 

  13. T.K. Ng, C. Zhao, C. Shen, S. Jahangir, B. Janjua, A. Slimane, C. Kang, A. Syed, J. Li, A. Alyamani, M. El-Desouki, P. Bhattacharya, B.S. Ooi, Red to near-infrared emission from InGaN/GaN quantum-disks-in-nanowires LED, in Conference on Lasers and Electro-Optics (CLEO), USA, 2014 (Optical Society of America, 2014)

  14. V. Bougrov, M.E. Levinshtein, S.L. Rumyantsev, A. Zubrilov, in Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe (John Wiley & Sons, Inc., New York, 2001), pp. 1–30.

  15. W.R. Lambrecht, B. Segall, Phys. Rev. B 47, 9289 (1993)

    Article  ADS  Google Scholar 

  16. M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, J.M. Baranowski, C.T. Foxon, T.S. Cheng, Appl. Phys. Lett. 69, 73 (1996)

    Article  ADS  Google Scholar 

  17. Y.-N. Xu, W.Y. Ching, Phys. Rev. B 48, 4335 (1993)

    Article  ADS  Google Scholar 

  18. T.B. Susilo, Intermixing Effects on Emission Properties of Quantum Disk-in-nanowire (QD-NW) LED Structures, MSc, Thesis (King Fahd University of Petroluem & Minerals, Dhahran, Saudi Arabia, 2015)

  19. G. Orsal, Y. El Gmili, N. Fressengeas, J. Streque, R. Djerboub, T. Moudakir, S. Sundaram, A. Ougazzaden, J.P. Salvestrini, Opt. Mater. Express 4, 1030 (2014)

    Article  ADS  Google Scholar 

  20. J. Piprek (Ed.), F. Bernardini, Nitride Semiconductor Devices: Principles and Simulation: Basic Theory vs. Practical Recipes (Wiley-VCH Verlag GmbH & Co. KgaA, Germany, 2007)

  21. J. Piprek (Ed.), R. Goldhahn, C. Buchheim, P. Schley, A.T. Winzer, H. Wenzel, Nitride Semiconductor Devices: Principles and Simulation: Optical Constants of Bulk Nitrides (Wiley-VCH Verlag GmbH & Co. KgaA, Germany, 2007)

  22. D.M. Sullivan, Quantum Mechanics for Electrical Engineers (IEEE Press, New Jersey, 2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Alsunaidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susilo, T.B., Khan, I. & Alsunaidi, M.A. Analysis of emission properties of intermixed InGaN/GaN quantum wells using a concentration-dependent interdiffusion model. Eur. Phys. J. D 73, 258 (2019). https://doi.org/10.1140/epjd/e2019-100102-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100102-6

Keywords

Navigation