Skip to main content
Log in

Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Metal clusters and nanoparticles (NPs) have been studied intensively due to their unique chemical, physical, electrical, and optical properties, resulting from their dimensions, which provided host of applications in nanoscience and nanotechnology. Formation of new materials by embedding NPs into various matrices (i.e. formation of nanocomposites) further expands the horizon of possible application of such nanomaterials. In the last few decades, the focus was put on the formation of metallic and metal oxide NPs via a so-called gas aggregation nanoparticle source employing magnetron sputtering (i.e. Haberland concept). In this paper, an overview is given of the recent progress in formation and deposition of NPs by the gas aggregation method. Examples range from noble metals (Ag, Au) through reactive metals (Al, Ti) to Si and the respective oxides. Emphasis is placed on the mechanism of nanoparticle growth and the resulting properties. Moreover, kinetic Monte Carlo simulations were developed to explain the growth mechanism and dynamics of nanoparticle formation depending on the experimental conditions. In addition, the role of trace amounts of reactive gases and of pulsed operation of the plasma on the nucleation process is addressed. Finally, the treatment of the NPs in the plasma environment resulting in nanoparticle charging, morphological and chemical modifications is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Jelinek, Nanoparticles (De Gruyter Textbook) (De Gruyter, Berlin, 2015)

  2. F. Faupel, V. Zaporojtchenko, T. Strunskus, M. Elbahri, Adv. Eng. Mater. 12, 1177 (2010)

    Article  Google Scholar 

  3. A. Edelstein, R. Cammaratra, Nanomaterials: synthesis, properties and applications (Institute of Physics Publishing, Bristol, Philadelphia, 1998)

  4. H. Kobayashi, A.T. Bell, M. Shen, Macromolecules 7, 277 (1974)

    Article  ADS  Google Scholar 

  5. K. Takahashi, K. Tachibana, J. Vac. Sci. Technol. A: Vac. Surf. Films 19, 2055 (2001)

    Article  ADS  Google Scholar 

  6. S.V. Vladimirov, K. Ostrikov, Plasmas Polym. 8, 135 (2003)

    Article  Google Scholar 

  7. I. Denysenko, J. Berndt, E. Kovačević, I. Stefanovic, V. Selenin, J. Winter, Phys. Plasmas 13, 073507 (2006)

    Article  ADS  Google Scholar 

  8. Y. Huttel, Gas-phase synthesis of nanoparticles (Wiley, Weinheim, 2017)

  9. C.G. Granqvist, R.A. Buhrman, J. Appl. Phys. 47, 2200 (1976)

    Article  ADS  Google Scholar 

  10. K. Sattler, J. Mühlbach, E. Recknagel, Phys. Rev. Lett. 45, 821 (1980)

    Article  ADS  Google Scholar 

  11. F. Frank, W. Schulze, B. Tesche, J. Urban, B. Winter, Surf. Sci. 156, 90 (1985)

    Article  ADS  Google Scholar 

  12. H. Haberland, M. Karrais, M. Mall, Y. Thurner, J. Vac. Sci. Technol. A: Vac. Surf. Films 10, 3266 (1992)

    Article  ADS  Google Scholar 

  13. R. Lamber, A. Baalmann, N.I. Jaeger, G. Schulz-Ekloff, S. Wetjen, Adv. Mater. 6, 223 (1994)

    Article  Google Scholar 

  14. P. Milani, P. Piseri, E. Barborini, S. Iannotta, Mater. Sci. Forum 195, 43 (1995)

    Article  Google Scholar 

  15. M. Goto, J. Murakami, Y. Tai, K. Yoshimura, K. Igarashi, S. Tanemura, Z. Phys. D: Atoms Mol. Clust. 40, 115 (1997)

    Article  Google Scholar 

  16. D. Salz, R. Lamber, M. Wark, A. Baalmann, N. Jaeger, Phys. Chem. Chem. Phys. 1, 4447 (1999)

    Article  Google Scholar 

  17. C. Binns, Surf. Sci. Rep. 44, 1 (2001)

    Article  ADS  Google Scholar 

  18. S. Pratontep, S.J. Carroll, C. Xirouchaki, M. Streun, R.E. Palmer, Rev. Sci. Instrum. 76, 045103 (2005)

    Article  ADS  Google Scholar 

  19. A. Banerjee, R. Krishna, B. Das, Appl. Phys. A 90, 299 (2007)

    Article  ADS  Google Scholar 

  20. V.N. Popok, I. Barke, E.E. Campbell, K.H. Meiwes-Broer, Surf. Sci. Rep. 66, 347 (2011)

    Article  ADS  Google Scholar 

  21. V. Straák, S. Block, S. Drache, Z. Hubička, C.A. Helm, L. Jastrabík, M. Tichý, R. Hippler, Surf. Coat. Technol. 205, 2755 (2011)

    Article  Google Scholar 

  22. B. Gojdka, V. Zaporojtchenko, V. Hrkac, J. Xiong, L. Kienle, T. Strunskus, F. Faupel, Appl. Phys. Lett. 100, 133104 (2012)

    Article  ADS  Google Scholar 

  23. A.M. Zachary, I.L. Bolotin, L. Hanley, in Nanofabrication using focused ion and electron beams: principles and applications, edited by I. Utke, S. Moshkalev, P. Russell (Oxford University Press, New York, 2012), pp. 1–26

  24. M. Ganeva, A. Pipa, R. Hippler, Surf. Coat. Technol. 213, 41 (2012)

    Article  Google Scholar 

  25. B. Briehl, H.M. Urbassek, J. Vac. Sci. Technol. A: Vac. Surf. Films 17, 256 (1999)

    Article  ADS  Google Scholar 

  26. B.M. Smirnov, Phys. Usp. 46, 589 (2003)

    Article  ADS  Google Scholar 

  27. E. Quesnel, E. Pauliac-Vaujour, V. Muffato, J. Appl. Phys. 107, 054309 (2010)

    Article  ADS  Google Scholar 

  28. P.V. Kashtanov, B.M. Smirnov, R. Hippler, Europhys. Lett. 91, 63001 (2010)

    Article  ADS  Google Scholar 

  29. A.A. Turkin, M.V. Dutka, Y.T. Pei, D.I. Vainshtein, J.T.M. De Hosson, J. Appl. Phys. 111, 124326 (2012)

    Article  ADS  Google Scholar 

  30. M. Hanif, R.R. Juluri, M. Chirumamilla, V.N. Popok, J. Polym. Sci. B: Polym. Phys. 54, 1152 (2016)

    Article  ADS  Google Scholar 

  31. J. Hanuš, T. Steinhartová, O. Kylián, J. Kousal, P. Malinský, A. Choukourov, A. Macková, H. Biederman, Plasma Process. Polym. 13, 879 (2016)

    Article  Google Scholar 

  32. H. Schaber, T. Martin, Surf. Sci. 156, 64 (1985)

    Article  ADS  Google Scholar 

  33. J. Kousal, O. Polonskyi, O. Kylián, A. Choukourov, A. Artemenko, J. Pešička, D. Slavínská, H. Biederman, Vacuum 96, 32 (2013)

    Article  ADS  Google Scholar 

  34. L. Zhang, J. Shao, X. Chen, Vacuum 129, 105 (2016)

    Article  ADS  Google Scholar 

  35. J.W. Abraham, A. Hinz, T. Strunskus, F. Faupel, M. Bonitz, Eur. Phys. J. D 72, 92 (2018)

    Article  Google Scholar 

  36. J.W. Abraham, T. Strunskus, F. Faupel, M. Bonitz, J. Appl. Phys. 119, 185301 (2016)

    Article  ADS  Google Scholar 

  37. K. Fujioka, Kinetic Monte Carlo Simulations of Cluster Growth in Magnetron Plasmas, PhD thesis, University of Kiel, 2015

  38. A. Jansen, An introduction to kinetic Monte Carlo simulations of surface reactions, Lecture notes in physics (Springer-Verlag, Berlin, 2012)

  39. L. Rosenthal, A. Filinov, M. Bonitz, V. Zaporojtchenko, F. Faupel, Contrib. Plasma Phys. 51, 971 (2011)

    Article  ADS  Google Scholar 

  40. M. Bonitz, L. Rosenthal, K. Fujioka, V. Zaporojtchenko, F. Faupel, H. Kersten, Contrib. Plasma Phys. 52, 890 (2012)

    Article  ADS  Google Scholar 

  41. L. Rosenthal, H. Greve, V. Zaporojtchenko, T. Strunskus, F. Faupel, M. Bonitz, J. Appl. Phys. 114, 044305 (2013)

    Article  ADS  Google Scholar 

  42. J.W. Abraham, N. Kongsuwan, T. Strunskus, F. Faupel, M. Bonitz, J. Appl. Phys. 117, 014305 (2015)

    Article  ADS  Google Scholar 

  43. M.G. Gauthier, G.W. Slater, Phys. Rev. E 70, 015103 (2004)

    Article  ADS  Google Scholar 

  44. B.M. Smirnov, Phys. Usp. 54, 691 (2011)

    Article  ADS  Google Scholar 

  45. M.V. Smoluchowski, Z. Phys. 17, 557 (1916)

    ADS  Google Scholar 

  46. M. Ganeva, Formation of metal nano-size clusters with a DC magnetron-based gas aggregation source, PhD thesis, University of Greifswald, 2013

  47. M. Ganeva, A.V. Pipa, B.M. Smirnov, P.V. Kashtanov, R. Hippler, Plasma Sources Sci. Technol. 22, 045011 (2013)

    Article  ADS  Google Scholar 

  48. K. Nanda, S. Sahu, S. Behera, Phys. Rev. A 66, 84 (2002)

    Article  Google Scholar 

  49. T. Peter, S. Rehders, U. Schürmann, T. Strunskus, V. Zaporojtchenko, F. Faupel, J. Nanopart. Res. 15, 1710 (2013)

    Article  ADS  Google Scholar 

  50. T. Acsente, R.F. Negrea, L.C. Nistor, C. Logofatu, E. Matei, R. Birjega, C. Grisolia, G. Dinescu, Eur. Phys. J. D 69, 161 (2015)

    Article  ADS  Google Scholar 

  51. G.E. Johnson, R. Colby, J. Laskin, Nanoscale 7, 3491 (2015)

    Article  ADS  Google Scholar 

  52. E. Palesch, A. Marek, P. Solar, O. Kylian, J. Vyskocil, H. Biederman, V. Cech, Thin Solid Films 544, 593 (2013)

    Article  ADS  Google Scholar 

  53. M. Ganeva, T. Peter, S. Bornholdt, H. Kersten, T. Strunskus, V. Zaporojtchenko, F. Faupel, R. Hippler, Contrib. Plasma Phys. 52, 881 (2012)

    Article  ADS  Google Scholar 

  54. S. Mondal, B. Satpati, S.R. Bhattacharyya, J. Nanosci. Nanotechnol. 15, 611 (2015)

    Article  Google Scholar 

  55. O. Kylián, J. Kratochvíl, J. Hanuš, O. Polonskyi, P. Solar, H. Biederman, Thin Solid Films 550, 46 (2014)

    Article  ADS  Google Scholar 

  56. O. Kylián, J. Prokeš, O. Polonskyi, J. Čechvala, J. Kousal, J. Pešička, J. Hanuš, H. Biederman, Thin Solid Films 571, 13 (2014)

    Article  ADS  Google Scholar 

  57. D.A. Eastham, B. Hamilton, P.M. Denby, Nanotechnology 13, 51 (2002)

    Article  ADS  Google Scholar 

  58. C. Xirouchaki, R.E. Palmer, Philos. Trans. Ser. A: Math. Phys. Eng. Sci. 362, 117 (2004)

    Article  ADS  Google Scholar 

  59. A.K. Srivastava, R. Yadev, V.N. Rai, T. Ganguly, S.K. Deb, Surface plasmon resonance in gold nanoparticles, in AIP Conference Proceedings (2012), Vol. 1447, pp. 305–306

  60. B. Gojdka, V. Hrkac, J. Xiong, M. Gerken, L. Kienle, T. Strunskus, V. Zaporojtchenko, F. Faupel, J. Appl. Phys. 112, 044303 (2012)

    Article  ADS  Google Scholar 

  61. T. Peter, M. Wegner, V. Zaporojtchenko, T. Strunskus, S. Bornholdt, H. Kersten, F. Faupel, Surf. Coat. Technol. 205, S38 (2011)

    Article  Google Scholar 

  62. O. Polonskyi, O. Kylián, M. Drábik, J. Kousal, P. Solar, A.Artemenko, J. Čechvala, A. Choukourov, D. Slavínská, H. Biederman, J. Mater. Sci. 49, 3352 (2014)

    Article  ADS  Google Scholar 

  63. O. Polonskyi, P. Solar, O. Kylián, M. Drábik, A. Artemenko, J. Kousal, J. Hanuš, J. Pešička, I. Matolínová, E. Kolíbalová et al., Thin Solid Films 520, 4155 (2012)

    Article  ADS  Google Scholar 

  64. P. Solar, O. Kylián, O. Polonskyi, A. Artemenko, D. Arzhakov, M. Drábik, D. Slavínská, M. Vandrovcová, L. Bačáková, H. Biederman, Surf. Coat. Technol. 206, 4335 (2012)

    Article  Google Scholar 

  65. A. Marek, J. Valter, S. Kadlec, J. Vyskočil, Surf. Coat. Technol. 205, S573 (2011)

    Article  Google Scholar 

  66. T. Peter, O. Polonskyi, B. Gojdka, A. Mohammad Ahadi, T. Strunskus, V. Zaporojtchenko, H. Biederman, F. Faupel, J. Appl. Phys. 112, 114321 (2012)

    Article  ADS  Google Scholar 

  67. A.M. Ahadi, V. Zaporojtchenko, T. Peter, O. Polonskyi, T. Strunskus, F. Faupel, J. Nanopart. Res. 15, 2125 (2013)

    Article  ADS  Google Scholar 

  68. D. Depla, S. Mahieu, Reactive sputter deposition (Springer-Verlag, Berlin, 2008)

  69. A.M. Ahadi, O. Polonskyi, U. Schürmann, T. Strunskus, F. Faupel, J. Phys. D: Appl. Phys. 48, 035501 (2015)

    Article  ADS  Google Scholar 

  70. O. Polonskyi, T. Peter, A. Mohammad Ahadi, A. Hinz, T. Strunskus, V. Zaporojtchenko, H. Biederman, F. Faupel, Appl. Phys. Lett. 103, 033118 (2013)

    Article  ADS  Google Scholar 

  71. W. Saddique, Nanoclusters Produced by High Power Impuls Magnetron Sputtering (HiPIMS), Master thesis, University of Kiel, 2015

  72. M. Honda, Y. Kumamoto, A. Taguchi, Y. Saito, S. Kawata, Appl. Phys. Lett. 104, 061108 (2014)

    Article  ADS  Google Scholar 

  73. E. Vasiliauskaite, Nanoparticle Deposition by Pulsed Direct Current Magnetron Sputtering in a Reactive Gas Admixture, Master thesis, University of Kiel, 2014

  74. A.M. Ahadi, T. Trottenberg, S. Rehders, T. Strunskus, H. Kersten, F. Faupel, Phys. Plasmas 22, 083513 (2015)

    Article  ADS  Google Scholar 

  75. A.M. Ahadi, A. Hinz, O. Polonskyi, T. Trottenberg, T. Strunskus, H. Kersten, F. Faupel, J. Vac. Sci. Technol. A: Vac. Surf. Films 34, 021301 (2016)

    Article  Google Scholar 

  76. P. Solar, O. Polonskyi, A. Olbricht, A. Hinz, A. Shelemin, O. Kylián, A. Choukourov, F. Faupel, H. Biederman, Sci. Rep. 7, 8514 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Polonskyi.

Additional information

Contribution to the Topical Issue “Fundamentals of Complex Plasmas”, edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polonskyi, O., Ahadi, A.M., Peter, T. et al. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. Eur. Phys. J. D 72, 93 (2018). https://doi.org/10.1140/epjd/e2017-80419-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80419-8

Navigation