Skip to main content
Log in

Non-classical plasma sheaths: space-charge-limited and inverse regimes under strong emission from surfaces

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The collisionless plasma sheath represents an important example of Vlasov theory application. In this study, Particle-in-Cell/Monte Carlo Collision methodology has been used to study different examples of plasma sheaths under strong negative charge emission from surface. Secondary electrons emitted by primary electrons (acceleration region of Hall-effect discharge) and by photons (dusty plasma) are responsible for a complete inverse sheath: the potential monotonically increases toward a positively charged wall that is shielded by a single layer of negative charge. No ion-accelerating presheath exists in the bulk plasma region and the ion flux at the wall is zero. In the case of production of hydrogen negative ions by neutral conversion on the plasma grid in the extraction region of a negative ion source, a space-charge-limited regime occurs with the formation of a non-monotonic double layer in front of the grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Langmuir, L. Tonks, Phys. Rev. 34, 876 (1929)

    Article  ADS  Google Scholar 

  2. A. Caruso, A. Cavaliere, Nuovo Cimento 26, 1389 (1962)

    Article  MATH  Google Scholar 

  3. F. Taccogna, S. Longo, M. Capitelli, Phys. Plasmas 11, 1220 (2004)

    Article  ADS  Google Scholar 

  4. F. Taccogna, R. Schneider, S. Longo, M. Capitelli, Plasma Sources Sci. Technol. 17, 024003 (2008)

    Article  ADS  Google Scholar 

  5. F. Taccogna, P. Minelli, P. Diomede, S. Longo, M. Capitelli, R. Schneider, Plasma Sources Sci. Technol. 20, 024009 (2011)

    Article  ADS  Google Scholar 

  6. J.P. Sheehan, N. Hershkowitz, Plasma Sources Sci. Technol. 20, 063001 (2011)

    Article  ADS  Google Scholar 

  7. I. Richterová, J. Pavlu, Z. Nêmecek, J. Safránková, P. Zilavy, Adv. Space Res. 38, 2551 (2006)

    Article  ADS  Google Scholar 

  8. G.D. Hobbs, J.A. Wesson, Plasma Phys. 9, 85 (1967)

    Article  ADS  Google Scholar 

  9. M.A. Furman, M.T.F. Pivi, Phys. Rev. ST Accel. Beams 5, 124404 (2002)

    Article  ADS  Google Scholar 

  10. M.D. Campanell, A.V. Khrabrov, I.D. Kaganovich, Phys. Rev. Lett. 108, 255001 (2012)

    Article  ADS  Google Scholar 

  11. M.D. Campanell, Phys. Rev. E 88, 033103 (2013)

    Article  ADS  Google Scholar 

  12. M. Seidl, H.L. Cui, J.D. Isenberg, H.J. Know, B.S. Lee, S.T. Melnychuk, J. Appl. Phys. 79, 2896 (1996)

    Article  ADS  Google Scholar 

  13. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985)

  14. D. Tskhakaya, K. Matyash, R. Schneider, F. Taccogna, Contrib. Plasma Phys. 47, 549 (2007)

    Article  Google Scholar 

  15. M. Horányi, C.K. Goertz, Astrophys. J. 361, 155 (1990)

    Article  ADS  Google Scholar 

  16. A.R. Poppe, M. Piquette, A. Likhanskii, M. Horányi, Icarus 221, 135 (2012)

    Article  ADS  Google Scholar 

  17. R. McAdams, A.J.T. Holmes, D.B. King, E. Surrey, Plasma Sources Sci. Technol. 20, 035023 (2011)

    Article  ADS  Google Scholar 

  18. B.T. Draine, E.E. Salpeter, Astrophys. J. 231, 77 (1979)

    Article  ADS  Google Scholar 

  19. Q. Ma, L.S. Matthews, V. Land, T.W. Hyde, Astrophys. J. 763, 77 (2013)

    Article  ADS  Google Scholar 

  20. F. Taccogna, S. Longo, M. Capitelli, R. Schneider, Contrib. Plasma Phys. 48, 375 (2008)

    Article  Google Scholar 

  21. F. Taccogna, S. Longo, M. Capitelli, R. Schneider, Appl. Phys. Lett. 94, 251502 (2009)

    Article  ADS  Google Scholar 

  22. D. Sydorenko, I. Kaganovich, Y. Raitses, A. Smolyakov, Phys. Rev. Lett. 103, 145004 (2009)

    Article  ADS  Google Scholar 

  23. M.D. Campanell, A.V. Khrabrov, I.D. Kaganovich, Phys. Rev. Lett. 108, 235001 (2012)

    Article  ADS  Google Scholar 

  24. F. Taccogna, Contrib. Plasma Phys. 52, 744 (2012)

    Article  ADS  Google Scholar 

  25. F. Taccogna, R. Schneider, S. Longo, M. Capitelli, Phys. Plasmas 15, 103502 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Taccogna.

Additional information

Contribution to the Topical Issue “Theory and Applications of the Vlasov Equation”, edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taccogna, F. Non-classical plasma sheaths: space-charge-limited and inverse regimes under strong emission from surfaces. Eur. Phys. J. D 68, 199 (2014). https://doi.org/10.1140/epjd/e2014-50132-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50132-5

Keywords

Navigation