Skip to main content
Log in

Structure and magnetic properties of FenGd clusters, n = 12 − 19

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The electronic, geometrical, and magnetic structures of iron clusters Fe n substituted with a single Gd atom are studied using density functional theory with generalized gradient approximation for n = 12 − 19. An all electron basis set of a triple-ζ quality is chosen for the iron atoms whereas an effective core potential and the basis set of a triple-ζ quality are used for the Gd atom in optimizations of Fe n Gd clusters. The lowest total energy state of a Fe n Gd cluster was found to possess a geometrical structure where the Gd atom substitutes for a surface Fe atom of the Fe n+1 cluster at given n. The total spin of a substituted cluster is larger than the total spin of the lowest total energy state of a unary iron cluster with the same number of atoms. The binding energy per atom in a substituted Fe n−1Gd cluster is somewhat smaller than the binding energy per atom in a non-substituted Fe n cluster. That is, the Gd substitution increases the total spin magnetic moment but destabilizes substituted iron clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cluster and nanostructured materials, edited by P. Jena, S.N. Behera (Nova Science, New York, 1996)

  2. V. Kumar, K. Esfarjani, Y. Kawazoe, Clusters and nanomaterials, Springer Series in Cluster Physics (Springer-Verlag, Berlin, 2002)

  3. S.G. Boyes, M.D. Rowe, N.J. Serkova, F.J. Kim, J.R. Lambert, P.N. Werahera, Nano LIFE 1, 263 (2010)

    Article  Google Scholar 

  4. I.M.L. Billas, A. Châtelain, W.A. de Heer, Science 265, 1682 (1994)

    Article  ADS  Google Scholar 

  5. S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Russ. Chem. Rev. 74, 489 (2005)

    Article  ADS  Google Scholar 

  6. L.W. Roeland, G.J. Cock, F.A. Muller, A.C. Moleman, K.A. McEwen, R.G. Jordan, D.W. Jones, J. Phys. F 5, L233 (1975)

    Article  ADS  Google Scholar 

  7. A.N. Chantis, M. van Schilfgaarde, T. Kotani, Phys. Rev. B 76, 165126 (2007)

    Article  ADS  Google Scholar 

  8. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  9. H. Zeng, C. Kuang, Y. Zhang, M. Yue, Bull. Mater. Sci. 34, 825 (2011)

    Article  Google Scholar 

  10. J.A. Nelson, L.H. Bennett, M.J. Wagner, J. Am. Chem. Soc. 124, 2979 (2002)

    Article  Google Scholar 

  11. C. Yan, M.J. Wagner, Nano Lett. 13, 2611 (2013)

    Article  ADS  Google Scholar 

  12. D.C. Douglass, A.J. Cox, J.P. Bucher, L.A. Bloomfield, Phys. Rev. B 47, 12874 (1993)

    Article  ADS  Google Scholar 

  13. J.P. Bucher, L.A. Bloomfield, Int. J. Mod. Phys. B 7, 1079 (1993)

    Article  ADS  Google Scholar 

  14. D.C. Douglass, J.P. Bucher, L.A. Bloomfield, Phys. Rev. Lett. 68, 1774 (1992)

    Article  ADS  Google Scholar 

  15. D. Gerion, A. Hirt, A. Châtelain, Phys. Rev. Lett. 83, 532 (1999)

    Article  ADS  Google Scholar 

  16. M. Yue, J.X. Zhang, H. Zeng, K.J. Wang, Appl. Phys. Lett. 89, 232504 (2006)

    Article  ADS  Google Scholar 

  17. F. López-Urías, A. Díaz-Ortiz, J.L. Morán-López, Phys. Rev. B 66, 144406 (2002)

    Article  ADS  Google Scholar 

  18. V.Z. Cerovski, S.D. Mahanti, S.N. Khanna, Eur. Phys. J. D 10, 119 (2000)

    Article  ADS  Google Scholar 

  19. H.K. Yuan, H. Chen, A.L. Kuang, B. Wu, J. Chem. Phys. 135, 114512 (2011)

    Article  ADS  Google Scholar 

  20. A. Ayuela, N.H. March, D.J. Klein, J. Phys. Chem. A 111, 10162 (2007)

    Article  Google Scholar 

  21. A.C. Tsipis, A.V. Stalikas, J. Comput. Chem. 32, 620 (2011)

    Article  Google Scholar 

  22. W. Xu, W.-X. Ji, Y.-X. Qiu, W.H.E. Schwarz, S.-G. Wang, Phys. Chem. Chem. Phys. 15, 7839 (2013)

    Article  Google Scholar 

  23. A.B. Rahane, M.D. Deshpande, V. Kumar, J. Phys. Chem. C 116, 6115 (2012)

    Article  Google Scholar 

  24. G. Rollmann, S. Sahoo, P. Entel, Phys. Stat. Sol. A 201, 3263 (2004)

    Article  ADS  Google Scholar 

  25. S. Sahoo, G. Rollmann, P. Entel, Phase Trans. 79, 693 (2006)

    Article  Google Scholar 

  26. F. Aguilera-Granja, A. Vega, Phys. Rev. B 79, 144423 (2009)

    Article  ADS  Google Scholar 

  27. F. Aguilera-Granja, R.C. Longo, L.J. Gallego, A. Vega, J. Chem. Phys. 132, 184507 (2010)

    Article  ADS  Google Scholar 

  28. C. Di Paola, F. Baletto, Eur. Phys. J. D 67, 49 (2013)

    Article  ADS  Google Scholar 

  29. G. Kim, Y. Park, M.J. Han, J. Yu, C. Heo, Y.H. Lee, Solid State Commun. 149, 2058 (2009)

    Article  ADS  Google Scholar 

  30. J. Trygg, B. Johansson, M.S.S. Brooks, J. Magn. Magn. Mater. 104–107, 1447 (1992)

    Article  Google Scholar 

  31. M. Richter, J. Phys. D 31, 1017 (1998)

    Article  ADS  Google Scholar 

  32. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  33. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1991)

    Article  ADS  Google Scholar 

  34. G.L. Gutsev, C.W. Bauschlicher Jr., J. Phys. Chem. A 107, 4755 (2003)

    Article  Google Scholar 

  35. G.L. Gutsev, M. Mochena, P. Jena, C.W. Bauschlicher Jr., H. Partridge III, J. Chem. Phys. 121, 6785 (2004)

    Article  ADS  Google Scholar 

  36. K. Pradhan, G.L. Gutsev, C.A. Weatherford, P. Jena, J. Chem. Phys. 134, 144305 (2011)

    Article  ADS  Google Scholar 

  37. M. Wu, A.K. Kandalam, G.L. Gutsev, P. Jena, Phys. Rev. B 86, 174410 (2012)

    Article  ADS  Google Scholar 

  38. G.L. Gutsev, C.A. Weatherford, P. Jena, E. Johnson, B.R. Ramachandran, J. Phys. Chem. A 116, 10218 (2012)

    Article  Google Scholar 

  39. G.L. Gutsev, C.W. Weatherford, K.G. Belay, B.R. Ramachandran, P. Jena, J. Chem. Phys. 138, 164303 (2013)

    Article  ADS  Google Scholar 

  40. G.L. Gutsev, C.W. Bauschlicher Jr., J. Phys. Chem. A 107, 7013 (2003)

    Article  Google Scholar 

  41. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980)

    Article  ADS  Google Scholar 

  42. L.A. Curtiss, M.P. McGrath, J.-P. Blaudeau, N.E. Davis, R.C. Binning Jr., L. Radom, J. Chem. Phys. 103, 6104 (1995)

    Article  ADS  Google Scholar 

  43. M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 90, 1730 (1989)

    Article  ADS  Google Scholar 

  44. A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuss, Mol. Phys. 80, 1431 (1993)

    Article  ADS  Google Scholar 

  45. X. Cao, M. Dolg, J. Chem. Phys. 115, 7348 (2001)

    Article  ADS  Google Scholar 

  46. R. Gulde, P. Pollak, F. Weigend, J. Chem. Theor. Comput. 8, 4062 (2012)

    Article  Google Scholar 

  47. M. Dolg, H. Stoll, H. Preuss, J. Mol. Struct. (Theochem) 271, 239 (1992)

    Article  Google Scholar 

  48. M. Dolg, W. Liu, S. Kaldova, Int. J. Quant. Chem. 76, 359 (2000)

    Article  Google Scholar 

  49. X. Cao, M. Dolg, Mol. Phys. 101, 1967 (2003)

    Article  ADS  Google Scholar 

  50. X. Chen, L. Fang, X. Shen, J.R. Lombardi, J. Chem. Phys. 112, 9780 (2000)

    Article  ADS  Google Scholar 

  51. A. Kant, S.S. Lin, Monatsch. Chem. 103, 757 (1972)

    Article  Google Scholar 

  52. R.J. Van Zee, S. Li, W. Weltner Jr., J. Chem. Phys. 100, 4010 (1994)

    Article  ADS  Google Scholar 

  53. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1-C.1 (Gaussian, Inc., Wallingford CT, 2009)

  54. B.I. Dunlap, Phys. Rev. A 41, 5691 (1990)

    Article  ADS  Google Scholar 

  55. O. Diéguez, M.M.G. Alemany, C. Rey, P. Ordejón, L. Gallego, J. Phys. Rev. B 63, 205407 (2001)

    Article  ADS  Google Scholar 

  56. P. Bobadova-Parvanova, K.A. Jackson, S. Srinivas, M. Horoi, C. Köhler, G. Seifert, J. Chem. Phys. 116, 3576 (2002)

    Article  ADS  Google Scholar 

  57. P. Bobadova-Parvanova, K.A. Jackson, S. Srinivas, M. Horoi, Phys. Rev. B 66, 195402 (2002)

    Article  ADS  Google Scholar 

  58. C. Köhler, G. Seifert, T. Frauenheim, Chem. Phys. 309, 23 (2005)

    Article  ADS  Google Scholar 

  59. R. Singh, P. Kroll, Phys. Rev. B 78, 245404 (2008)

    Article  ADS  Google Scholar 

  60. S. Sahoo A. Hucht, M.E. Gruner, G. Rollmann, P. Entel, A. Postnikov, J. Ferrer, L. Fernández-Seivane, A. Sil, Phys. Rev. B 82, 054418 (2010)

    Article  ADS  Google Scholar 

  61. M.J. Piotrowski, P. Piquini, J.L.F. Da Silva, Phys. Rev. B 81, 155446 (2010)

    Article  ADS  Google Scholar 

  62. H.K. Yuan, H. Chen, A.L. Kuang, C.L. Tian, J.Z. Wang, J. Chem. Phys. 139, 034314 (2013)

    Article  ADS  Google Scholar 

  63. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  Google Scholar 

  64. T. Oda, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 3622 (1998)

    Article  ADS  Google Scholar 

  65. D. Hobbs, G. Kresse, J. Hafner, Phys. Rev. B 62, 11556 (2000)

    Article  ADS  Google Scholar 

  66. Z.-D. Cheng, J. Zhu, Z. Tang, Chin. Phys. Lett. 28, 037501 (2011)

    Article  ADS  Google Scholar 

  67. D.R. Roy, R. Robles, S.N. Khanna, J. Chem. Phys. 132, 194305 (2010)

    Article  ADS  Google Scholar 

  68. G. Rollmann, P. Entel, S. Sahoo, Comput. Mater. Sci. 35, 275 (2006)

    Article  Google Scholar 

  69. C. Köhler, T. Frauenheim, B. Hourahine, G. Seifert, M. Sternberg, J. Phys. Chem. A 111, 5622 (2007)

    Article  Google Scholar 

  70. D.P. Pappas, A.P. Popov, A.N. Anisimov, B.V. Reddy, S.N. Khanna, Phys. Rev. Lett. 76, 4332 (1996)

    Article  ADS  Google Scholar 

  71. K. Tao, J. Zhou, Q. Sun, Q. Wang, V.S. Stepanyuk, P. Jena, Phys. Rev. B 89, 085103 (2014)

    Article  ADS  Google Scholar 

  72. M. Niemeyer, K. Hirsch, V. Zamudio-Bayer, A. Langenberg, M. Vogel, M. Kossick, C. Ebrecht, K. Egashira, A. Terasaki, T. Möller, B.V. Issendorff, J.T. Lau, Phys. Rev. Lett. 108, 057201 (2012)

    Article  ADS  Google Scholar 

  73. S. Sahoo, A. Hucht, M.E. Gruner, G. Rollmann, P. Entel, A. Postnikov, J. Ferrer, L. Fernández-Seivane, M. Richter, D. Fritsch, S. Sil, Phys. Rev. B 82, 054418 (2010)

    Article  ADS  Google Scholar 

  74. P.B. Armentrout, Ann. Rev. Phys. Chem. 52, 423 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady L. Gutsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutsev, G., Johnson, L., Belay, K. et al. Structure and magnetic properties of FenGd clusters, n = 12 − 19. Eur. Phys. J. D 68, 81 (2014). https://doi.org/10.1140/epjd/e2014-40830-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40830-3

Keywords

Navigation