Skip to main content
Log in

Soliton lasers stabilized by coupling to a resonant linear system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Separation into spectral and nonlinear complex-eigenvalue problems is shown to be an effective and flexible approach to soliton laser models. The simplest such model, a complex Ginzburg-Landau model with cubic nonlinearity, has no stable solitonic solutions. We show that coupling it to a resonant linear system is a simple and general route to stabilization, which encompasses several previous instances in both space- and time-domains. Graphical solution in the complex eigenvalue plane provides valuable insight into the similarities and differences of such models, and into the interpretation of related experiments. It can also be used predictively, to guide analysis, numerics and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dissipative solitons, Lecture Notes in Physics, edited by N. Akhmediev, A. Ankiewicz (Springer, New York, 2005), Vol. 661

  2. Dissipative solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, edited by N. Akhmediev, A. Ankiewicz (Springer, New York, 2008), Vol. 751

  3. T. Ackemann, W.J. Firth, G.-L. Oppo, Adv. At. Mol. Opt. Phys. 57, 323 (2009)

    Article  Google Scholar 

  4. Focus Issue on Dissipative Localized Structures in Extended Systems, edited by M. Tlidi, M. Taki, Chaos 17, 037101 (2007)

    Article  ADS  Google Scholar 

  5. L.A. Lugiato, IEEE J. Quantum Electron. 39, 193 (2003)

    Article  ADS  Google Scholar 

  6. S. Barland et al., Nature 419, 699 (2002)

    Article  ADS  Google Scholar 

  7. V.B. Taranenko, C.O. Weiss, Appl. Phys. B 72, 893 (2001)

    ADS  Google Scholar 

  8. S. Barbay et al., Opt. Lett. 31, 1504 (2006)

    Article  ADS  Google Scholar 

  9. X. Hachair et al., Phys. Rev. A 72, 013815 (2005)

    Article  ADS  Google Scholar 

  10. Y. Tanguy, T. Ackemann, W.J. Firth, R. Jäger, Phys. Rev. Lett. 100, 013907 (2008)

    Article  ADS  Google Scholar 

  11. Y. Tanguy, N. Radwell, T. Ackemann, R. Jäger, Phys. Rev. A 78, 023810 (2008)

    Article  ADS  Google Scholar 

  12. P. Genevet et al., Phys. Rev. Lett. 101, 123905 (2008)

    Article  ADS  Google Scholar 

  13. P. Genevet et al., Phys. Rev. A 79, 033819 (2009)

    Article  ADS  Google Scholar 

  14. T. Elsass et al., Appl. Phys. B 98, 327 (2009)

    Article  ADS  Google Scholar 

  15. R.P. Davey, N. Langford, A.I. Ferguson, Elect. Lett. 27, 1257 (1991)

    Article  Google Scholar 

  16. A.B. Grudinin, D.J. Richardson, D.N. Payne, Elect. Lett. 28, 1391 (1992)

    Article  Google Scholar 

  17. J. Atai, B. Malomed, Phys. Lett. A 246, 412 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. J.N. Kutz, B. Sandstede, Opt. Express 16, 636 (2008)

    Article  ADS  Google Scholar 

  19. F.W. Wise, P. Di Trapani, Opt. Photon. News 13, 28 (2002)

    Article  ADS  Google Scholar 

  20. P.V. Paulau, D. Gomila, T. Ackemann, N.A. Loiko, W.J. Firth, Phys. Rev. E 78, 016212 (2008)

    Article  ADS  Google Scholar 

  21. A.J. Scroggie, W.J. Firth, G.-L. Oppo, Phys. Rev. A 80, 013829 (2009)

    Article  ADS  Google Scholar 

  22. P. Genevet, Ph.D. thesis, Univ. Nice (2009)

  23. N.N. Rozanov, S.V. Fedorov, Opt. Spektrosk. 72, 1394 (1992) [Opt. Spectrosc. 72, 782 (1992)]

    Google Scholar 

  24. I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  25. L.M. Hocking, K. Stewartson, Proc. Roy. Soc. Lond. A 326, 289 (1972)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. N.R. Pereira, L. Stenflo, Phys. Fluids 20, 1733 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. P.A. Bélanger, L. Gagnon, C. Paré, Opt. Lett. 14, 943 (1989)

    Article  ADS  Google Scholar 

  28. C. Paré, L. Gagnon, P.A. Bélanger, Opt. Commun. 74, 228 (1989)

    Article  ADS  Google Scholar 

  29. N.N. Rosanov, Spatial hysteresis and optical patterns, Springer Series in Synergetics (Springer, Berlin, 2002)

  30. M. Bache et al., Appl. Phys. B 81, 913 (2005)

    Article  ADS  Google Scholar 

  31. N. Radwell, T. Ackemann. IEEE J. Quantum Electron. 45, 1388 (2009)

    Article  ADS  Google Scholar 

  32. L. Spinelli et al., Phys. Rev. A 58, 2542 (1998)

    Article  ADS  Google Scholar 

  33. B. Malomed, Chaos 17, 037117 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  34. P.V. Paulau, D. Gomila, P. Colet, M.A. Matías, N.A. Loiko, W.J. Firth, Phys. Rev. A 80, 023808 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Paulau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firth, W., Paulau, P. Soliton lasers stabilized by coupling to a resonant linear system. Eur. Phys. J. D 59, 13–21 (2010). https://doi.org/10.1140/epjd/e2010-00116-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00116-6

Keywords

Navigation