Skip to main content
Log in

The electroweak fit of the standard model after the discovery of a new boson at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental parameters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3σ with the indirect determination \(M_{H}=94^{\,+25}_{\,-22}~\mathrm{GeV}\). Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M W =80.359±0.011 GeV and \(\sin ^{2}\theta ^{\ell }_{{\rm eff}}= 0.23150\pm 0.00010\) from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find \(m_{t}= 175.8^{\:+2.7}_{\:-2.4}~ \mathrm {GeV}\), in agreement with the kinematic and cross-section-based measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The theoretical uncertainties arising from nonperturbative color-reconnection effects in the fragmentation process [13, 14], and from ambiguities in the top-mass definition [15, 16], affect the (kinematic) top-mass measurement. Their quantitative estimate is difficult and may reach roughly 0.5 GeV each, where the systematic error due to shower effects could be larger [13]. To estimate the effect of a theoretical uncertainty of 0.5 GeV, inserted in the fit as a uniform likelihood function according to the Rfit scheme [17, 18], we have repeated the indirect determination of some of the most relevant observables. We find in particular \(M_{H}=90^{\,+34}_{\,-21}~ \mathrm {GeV}\), M W =80.359±0.013 GeV, and \(\sin ^{2}\theta ^{\ell }_{{\rm eff}}=0.23148 \pm0.00010\), which, compared to the standard results given in Eqs. (1), (2) and (3), exhibit only a small deterioration in precision.

  2. The main source of systematic uncertainty in the ATLAS and CMS mass measurements stems from the energy and momentum calibrations, which should be uncorrelated between the experiments.

  3. The quantity of \(R^{0}_{b}\) has only little dependence on M H  [25].

  4. For the indirect determination of \(\sin ^{2}\theta ^{\ell }_{{\rm eff}}\), shown as the blue band in Fig. 3 (bottom right), we exclude from the fit all experimental measurements with direct sensitivity to \(\sin ^{2}\theta ^{\ell }_{{\rm eff}}\), namely the measurements of Γ Z , \(\sigma_{\rm had}^{0}\), \(R^{0}_{\ell }\), \(A_{\rm FB}^{0,\ell }\), A , \(\sin ^{2}\theta ^{\ell }_{{\rm eff}}(Q_{\rm FB})\), A c , A b , \(A_{\rm FB}^{0,c}\), \(A_{\rm FB}^{0,b}\), \(R^{0}_{c}\) and \(R^{0}_{b}\). As a compensation of the missing value of \(R^{0}_{\ell }\) we provide a value for \(\alpha _{\scriptscriptstyle S}(M_{Z}^{2})\). Since the fit results are independent of the exact \(\alpha _{\scriptscriptstyle S}\) value, we use our fit result 0.1191±0.0028 in this case.

  5. We show the aforementioned result of the Tevatron combination of the direct top-mass measurements [12], the top pole mass derived from the measured \(t\bar{t}\) cross section at the Tevatron (m t =173.3±2.8 GeV), assuming no new physics contributes to this cross-section measurement [32], the direct top-mass measurement of ATLAS determined in 1.04 fb−1 of pp collisions at \(\sqrt{s}=7~\mathrm{TeV}\) (m t =174.5±2.4 GeV) [33], the direct top-mass measurement of CMS based on 5.0 fb−1 of 7 TeV data (m t =173.5±1.1 GeV) [34], the aforementioned W mass world average [10] and the LEP/SLD average of the effective weak mixing angle (\(\sin ^{2}\theta ^{\ell }_{{\rm eff}}=0.23153 \pm0.00016\)) [9].

  6. For \(\alpha _{\scriptscriptstyle S}(M_{Z}^{2})\) we use the result from Table 1.

References

  1. ATLAS Collaboration, Phys. Lett. B (2012). 1207.7214

  2. CMS Collaboration, Phys. Lett. B (2012). 1207.7235

  3. ALEPH Collaboration, CDF Collaboration, D0 Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, 1012.2367

  4. LEP Electroweak Working Group (LEP EWWG), http://lepewwg.web.cern.ch/LEPEWWG

  5. J. Erler, P. Langacker, Phys. Rev. D 86, 010001 (2012) (in: Review for Particle Data Group)

    Article  Google Scholar 

  6. M. Baak et al., Eur. Phys. J. C 72, 2003 (2012). 1107.0975

    Article  ADS  Google Scholar 

  7. H. Flacher et al., Eur. Phys. J. C 60, 543 (2009). Erratum-ibid. C 71, 1718 (2011). 0811.0009

    Article  ADS  Google Scholar 

  8. O. Eberhardt et al., 1209.1101

  9. The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the SLD Electroweak and Heavy Flavour Working Groups, Phys. Rep. 427, 257 (2006). hep-ex/0509008

    ADS  Google Scholar 

  10. CDF Collaboration, D0 Collaboration, T. E. W. Group, 1204.0042

  11. CDF Collaboration, D0 Collaboration, T. E. W. Group, 1003.2826

  12. T. Aaltonen et al. (CDF Collaboration, D0 Collaboration), 1207.1069

  13. P. Skands, D. Wicke, Eur. Phys. J. C 52, 133 (2007). hep-ph/0703081

    Article  ADS  Google Scholar 

  14. D. Wicke, P.Z. Skands, Nuovo Cimento B 123, S1 (2008). 0807.3248

    ADS  Google Scholar 

  15. A.H. Hoang, A. Jain, I. Scimemi, I.W. Stewart, Phys. Rev. Lett. 101, 151602 (2008). 0803.4214

    Article  ADS  Google Scholar 

  16. A.H. Hoang, I.W. Stewart, Nucl. Phys. Proc. Suppl. 185, 220 (2008). 0808.0222

    Article  ADS  Google Scholar 

  17. A. Hoecker, H. Lacker, S. Laplace, F. Le Diberder, Eur. Phys. J. C 21, 225 (2001). hep-ph/0104062

    Article  ADS  Google Scholar 

  18. J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005). hep-ph/0406184

    Article  ADS  Google Scholar 

  19. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011). 1010.4180

    Article  ADS  Google Scholar 

  20. P. Baikov, K. Chetyrkin, J.H. Kuhn, Phys. Rev. Lett. 101, 012002 (2008). 0801.1821

    Article  ADS  Google Scholar 

  21. P. Baikov, K. Chetyrkin, J. Kuhn, J. Rittinger, Phys. Rev. Lett. 108, 222003 (2012). 1201.5804

    Article  ADS  Google Scholar 

  22. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69, 053006 (2004). hep-ph/0311148

    Article  ADS  Google Scholar 

  23. M. Awramik, M. Czakon, A. Freitas, J. High Energy Phys. 0611, 048 (2006). hep-ph/0608099

    Article  ADS  Google Scholar 

  24. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett. 93, 201805 (2004). hep-ph/0407317

    Article  ADS  Google Scholar 

  25. A. Freitas, Y.-C. Huang, J. High Energy Phys. 1208, 050 (2012). 1205.0299

    Article  ADS  Google Scholar 

  26. K. Hagiwara, S. Matsumoto, D. Haidt, C. Kim, Z. Phys. C 64, 559 (1994). Order of authors changed in journal. hep-ph/9409380

    Article  ADS  Google Scholar 

  27. K. Hagiwara, Annu. Rev. Nucl. Part. Sci. 48, 463 (1998)

    Article  ADS  Google Scholar 

  28. G.-C. Cho, K. Hagiwara, Nucl. Phys. B 574, 623 (2000). hep-ph/9912260

    Article  ADS  Google Scholar 

  29. G.-C. Cho, K. Hagiwara, Y. Matsumoto, D. Nomura, J. High Energy Phys. 1111, 068 (2011). 1104.1769

    Article  ADS  Google Scholar 

  30. A.B. Arbuzov et al., Comput. Phys. Commun. 174, 728 (2006). hep-ph/0507146

    Article  ADS  Google Scholar 

  31. D.Y. Bardin et al., Comput. Phys. Commun. 133, 229 (2001). hep-ph/9908433

    Article  ADS  MATH  Google Scholar 

  32. S. Alekhin, A. Djouadi, S. Moch, Phys. Lett. B 716, 214 (2012). 1207.0980

    Article  ADS  Google Scholar 

  33. G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 72, 2046 (2012). 1203.5755

    Article  ADS  Google Scholar 

  34. S. Chatrchyan et al. (CMS Collaboration), 1209.2319

  35. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    Article  ADS  Google Scholar 

  36. M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Louis Fayard whose questions have triggered the more detailed error analysis for the M W and \(\sin ^{2}\theta ^{\ell }_{{\rm eff}}\) predictions provided in this version of the paper.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to R. Kogler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

The Gfitter Group., Baak, M., Goebel, M. et al. The electroweak fit of the standard model after the discovery of a new boson at the LHC. Eur. Phys. J. C 72, 2205 (2012). https://doi.org/10.1140/epjc/s10052-012-2205-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2205-9

Keywords

Navigation