Skip to main content
Log in

Observational constraints of modified Chaplygin gas in loop quantum cosmology

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We have considered the FRW universe in loop quantum cosmology (LQC) model filled with the dark matter (perfect fluid with negligible pressure) and the modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter in terms of the observable parameters Ω m0, Ω x0 and H 0 with the redshift z and the other parameters like A, B, C, and α. From the Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ 2 test. The best fit values of the parameters are obtained by 66 %, 90 % and 99 % confidence levels. Next due to joint analysis with BAO and CMB observations, we have also obtained the bounds of the parameters (B,C) by fixing some other parameters α and A. From the best fit of the distance modulus μ(z) for our theoretical MCG model in LQC, we concluded that our model is in agreement with the Union2 sample data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.J. Perlmutter et al., Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  2. S.J. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  4. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  5. N.A. Bachall et al., Science 284, 1481 (1999)

    Article  ADS  Google Scholar 

  6. M. Tedmark et al., Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  7. D. Miller et al., Astrophys. J. 524, L1 (1999)

    Article  ADS  Google Scholar 

  8. C. Bennet et al., Phys. Rev. Lett. 85, 2236 (2000)

    Article  ADS  Google Scholar 

  9. S. Briddle et al., Science 299, 1532 (2003)

    Article  ADS  Google Scholar 

  10. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  11. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  13. P.J.E. Peebles, B. Ratra, Astrophys. J. Lett. 325, L17 (1988)

    Article  ADS  Google Scholar 

  14. T.R. Choudhury, T. Padmanabhan, Astron. Astrophys. 429, 807 (2007)

    Article  ADS  Google Scholar 

  15. T. Padmanabhan, T.R. Choudhury, Mon. Not. R. Astron. Soc. 344, 823 (2003)

    Article  ADS  Google Scholar 

  16. J.L. Tonry et al., Astrophys. J. 594, 1 (2003)

    Article  ADS  Google Scholar 

  17. B.J. Barris et al., Astrophys. J. 602, 571 (2004)

    Article  ADS  Google Scholar 

  18. R. Amanullah et al., Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  19. A. Kamenshchik et al., Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  20. V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67, 063509 (2003)

    Article  ADS  Google Scholar 

  21. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Gravity 21, 5609 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J. Lu et al., Phys. Lett. B 662, 87 (2008)

    Article  ADS  Google Scholar 

  23. D.-J. Liu, X.-Z. Li, Chin. Phys. Lett. 22, 1600 (2005)

    Article  ADS  Google Scholar 

  24. P. Wu, S.N. Zhang, J. Cosmol. Astropart. Phys. 06, 007 (2008)

    Article  ADS  Google Scholar 

  25. S. Chen, B. Wang, J. Jing, Phys. Rev. D 78, 123503 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Jamil, U. Debnath, Astrophys. Space Sci. 333, 3 (2011)

    Article  ADS  Google Scholar 

  27. X. Fu, H. Yu, P. Wu, Phys. Rev. D 78, 063001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. P. Wu, H. Yu, Phys. Lett. B 644, 16 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  29. P. Thakur, S. Ghose, B.C. Paul, Mon. Not. R. Astron. Soc. 397, 1935 (2009)

    Article  ADS  Google Scholar 

  30. B.C. Paul, S. Ghose, P. Thakur, arXiv:1101.1360v1 [astro-ph.CO]

  31. B.C. Paul, P. Thakur, S. Ghose, arXiv:1004.4256v1 [astro-ph.CO]

  32. S. Ghose, P. Thakur, B.C. Paul, arXiv:1105.3303v1 [astro-ph.CO]

  33. D. Stern et al., J. Cosmol. Astropart. Phys. 1002, 008 (2010)

    Article  ADS  Google Scholar 

  34. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  35. J.R. Bond et al., Mon. Not. R. Astron. Soc. 291, L33 (1997)

    ADS  Google Scholar 

  36. G. Efstathiou, J.R. Bond, Mon. Not. R. Astron. Soc. 304, 75 (1999)

    Article  ADS  Google Scholar 

  37. S. Nessaeris, L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 0701, 018 (2007)

    Article  ADS  Google Scholar 

  38. E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  39. A.G. Riess et al., Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  40. M. Kowalaski et al., Astrophys. J. 686, 749 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to IUCAA, Pune, India, where part of the work was carried out, for warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuvendu Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, S., Debnath, U. & Ranjit, C. Observational constraints of modified Chaplygin gas in loop quantum cosmology. Eur. Phys. J. C 72, 2101 (2012). https://doi.org/10.1140/epjc/s10052-012-2101-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2101-3

Keywords

Navigation