Skip to main content
Log in

AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present a global analysis of available data on inclusive structure functions and reduced cross sections measured in electron–proton scattering at small values of Bjorken-x, x<0.01, including the latest data from HERA on reduced cross sections. Our approach relies on the dipole formulation of DIS together with the use of the non-linear running coupling Balitsky–Kovchegov equation for the description of the small-x dynamics. We improve our previous studies by including the heavy quark (charm and beauty) contribution to the reduced cross sections, and also by considering a variable flavor scheme for the running of the coupling. We obtain a good description of the data, with the fit parameters remaining stable with respect to our previous analyses where only light quarks were considered. The inclusion of the heavy quark contributions resulted in a good description of available experimental data for the charm component of the structure function and reduced cross section provided the initial transverse distribution of heavy quarks was allowed to differ from (more specifically, to have a smaller radius than) that of the light flavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev. D 59, 014014 (1998). arXiv:hep-ph/9706377

    Article  ADS  Google Scholar 

  2. J. Jalilian-Marian, A. Kovner, H. Weigert, Phys. Rev. D 59, 014015 (1998). arXiv:hep-ph/9709432

    Article  ADS  Google Scholar 

  3. A. Kovner, J.G. Milhano, H. Weigert, Phys. Rev. D 62, 114005 (2000). arXiv:hep-ph/0004014

    Article  ADS  Google Scholar 

  4. H. Weigert, Nucl. Phys. A 703, 823 (2002). arXiv:hep-ph/0004044

    Article  ADS  Google Scholar 

  5. E. Iancu, A. Leonidov, L.D. McLerran, Nucl. Phys. A 692, 583 (2001). arXiv:hep-ph/0011241

    Article  ADS  MATH  Google Scholar 

  6. E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 703, 489 (2002). arXiv:hep-ph/0109115

    Article  ADS  MATH  Google Scholar 

  7. I. Balitsky, Nucl. Phys. B 463, 99 (1996). arXiv:hep-ph/9509348

    Article  ADS  Google Scholar 

  8. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999). arXiv:hep-ph/9901281

    Article  ADS  Google Scholar 

  9. N.N. Nikolaev, B.G. Zakharov, Z. Phys. C 49, 607 (1991)

    Article  Google Scholar 

  10. A.H. Mueller, Nucl. Phys. B 335, 115 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  11. K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59, 014017 (1998). arXiv:hep-ph/9807513

    Article  ADS  Google Scholar 

  12. E. Iancu, K. Itakura, S. Munier, Phys. Lett. B 590, 199 (2004). arXiv:hep-ph/0310338

    Article  ADS  Google Scholar 

  13. E. Gotsman, E. Levin, M. Lublinsky, U. Maor, Eur. Phys. J. C 27, 411 (2003). arXiv:hep-ph/0209074

    Article  ADS  Google Scholar 

  14. J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, U.A. Wiedemann, Eur. Phys. J. C 43, 353 (2005). arXiv:hep-ph/0502167

    Article  ADS  Google Scholar 

  15. H. Kowalski, D. Teaney, Phys. Rev. D 68, 114005 (2003). arXiv:hep-ph/0304189

    Article  ADS  Google Scholar 

  16. H. Kowalski, L. Motyka, G. Watt, Phys. Rev. D 74, 074016 (2006). arXiv:hep-ph/0606272

    Article  ADS  Google Scholar 

  17. V.P. Goncalves, M.S. Kugeratski, M.V.T. Machado, F.S. Navarra, Phys. Lett. B 643, 273 (2006). arXiv:hep-ph/0608063

    Article  ADS  Google Scholar 

  18. I.I. Balitsky, Phys. Rev. D 75, 014001 (2007). arXiv:hep-ph/0609105

    Article  ADS  Google Scholar 

  19. Y. Kovchegov, H. Weigert, Nucl. Phys. A 784, 188 (2007). arXiv:hep-ph/0609090

    Article  ADS  Google Scholar 

  20. E. Gardi, J. Kuokkanen, K. Rummukainen, H. Weigert, Nucl. Phys. A 784, 282 (2007). arXiv:hep-ph/0609087

    Article  ADS  Google Scholar 

  21. I. Balitsky, G.A. Chirilli, Phys. Rev. D 77, 014019 (2008). arXiv:0710.4330

    Article  ADS  Google Scholar 

  22. J.L. Albacete, Y.V. Kovchegov, Phys. Rev. D 75, 125021 (2007). arXiv:0704.0612

    Article  ADS  Google Scholar 

  23. J.L. Albacete, Phys. Rev. Lett. 99, 262301 (2007). arXiv:0707.2545

    Article  ADS  Google Scholar 

  24. J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, arXiv:0906.2721 (2009)

  25. J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, Phys. Rev. D 80, 034031 (2009). arXiv:0902.1112

    Article  ADS  Google Scholar 

  26. M.A. Betemps, V.P. Goncalves, J.T. de Santana Amaral, Eur. Phys. J. C 66, 137 (2010). arXiv:0907.3416

    Article  ADS  Google Scholar 

  27. J.L. Albacete, A. Dumitru, arXiv:1011.5161 (2010)

  28. J.L. Albacete, C. Marquet, Phys. Lett. B 687, 174 (2010). arXiv:1001.1378

    Article  ADS  Google Scholar 

  29. J.L. Albacete, C. Marquet, Phys. Rev. Lett. 105, 162301 (2010). arXiv:1005.4065

    Article  ADS  Google Scholar 

  30. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]

    ADS  Google Scholar 

  31. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) [Yad. Fiz. 15, 781 (1972)]

    Google Scholar 

  32. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  33. M. Dittmar et al., arXiv:0901.2504 (2009)

  34. F. Caola, S. Forte, J. Rojo, Phys. Lett. B 686, 127 (2010). arXiv:0910.3143

    Article  ADS  Google Scholar 

  35. H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241

    Article  ADS  Google Scholar 

  36. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002

    Article  ADS  Google Scholar 

  37. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977)

    MathSciNet  ADS  Google Scholar 

  38. I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

    Google Scholar 

  39. G. Altarelli, R.D. Ball, S. Forte, Nucl. Phys. B 799, 199 (2008). arXiv:0802.0032

    Article  ADS  MATH  Google Scholar 

  40. M. Ciafaloni, D. Colferai, G.P. Salam, A.M. Stasto, J. High Energy Phys. 0708, 046 (2007). arXiv:0707.1453

    Article  ADS  Google Scholar 

  41. G. Altarelli, R.D. Ball, S. Forte, Nucl. Phys. B 599, 383 (2001). arXiv:hep-ph/0011270

    Article  ADS  Google Scholar 

  42. C.D. White, R.S. Thorne, Phys. Rev. D 75, 034005 (2007). arXiv:hep-ph/0611204

    Article  ADS  Google Scholar 

  43. R.S. Thorne, arXiv:0808.1845 (2008)

  44. A. Capella, E.G. Ferreiro, C.A. Salgado, A.B. Kaidalov, Nucl. Phys. B 593, 336 (2001). arXiv:hep-ph/0005049

    Article  ADS  Google Scholar 

  45. N. Armesto, A.B. Kaidalov, C.A. Salgado, K. Tywoniuk, Phys. Rev. D 81, 074002 (2010). arXiv:1001.3021

    Article  ADS  Google Scholar 

  46. M. Klein et al., in EPAC’08, 11th European Particle Accelerator Conference (2008)

    Google Scholar 

  47. The Electron Ion Collider: A white paper, BNL Report BNL-68933-02/07-REV, ed. by A. Deshpande, R. Milner, R. Venugopalan

  48. F.D. Aaron et al. (H1), J. High Energy Phys. 01, 109 (2010). arXiv:9011.0884

    Article  ADS  Google Scholar 

  49. F.D. Aaron et al. (H1), Eur. Phys. J. C 65, 89 (2010). arXiv:0907.2643

    Article  ADS  Google Scholar 

  50. C. Adloff et al. (H1), Z. Phys. C 72, 593 (1996). arXiv:hep-ex/9607012

    Article  ADS  Google Scholar 

  51. C. Adloff et al. (H1), Phys. Lett. B 528, 199 (2002). arXiv:hep-ex/0108039

    Article  ADS  Google Scholar 

  52. A. Aktas et al. (H1), Eur. Phys. J. C 45, 23 (2006). arXiv:hep-ex/0507081

    Article  ADS  Google Scholar 

  53. A. Aktas et al. (H1), Eur. Phys. J. C 40, 349 (2005). arXiv:hep-ex/0411046

    Article  Google Scholar 

  54. J. Breitweg et al. (ZEUS), Phys. Lett. B 407, 402 (1997). arXiv:hep-ex/9706009

    Article  ADS  Google Scholar 

  55. G. Soyez, Phys. Lett. B 655, 32 (2007). arXiv:0705.3672

    Article  ADS  Google Scholar 

  56. I. Balitsky, G.A. Chirilli, Phys. Rev. D 83, 031502 (2011). arXiv:1009.4729

    Article  ADS  Google Scholar 

  57. J. Berger, A. Stasto, Phys. Rev. D 83, 034015 (2011). arXiv:1010.0671

    Article  ADS  Google Scholar 

  58. A. Kormilitzin, E. Levin, Nucl. Phys. A 849, 98 (2011). arXiv:1009.1468

    Article  ADS  Google Scholar 

  59. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  60. Y.V. Kovchegov, H. Weigert, Nucl. Phys. A 789, 260 (2007). arXiv:hep-ph/0612071

    Article  ADS  Google Scholar 

  61. R.D. Ball et al., Nucl. Phys. B 849, 296 (2011). arXiv:1101.1300

    Article  ADS  Google Scholar 

  62. L.D. McLerran, R. Venugopalan, Phys. Lett. B 424, 15 (1998). arXiv:nucl-th/9705055

    Article  ADS  Google Scholar 

  63. E. Iancu, K. Itakura, L. McLerran, Nucl. Phys. A 708, 327 (2002). arXiv:hep-ph/0203137

    Article  ADS  MATH  Google Scholar 

  64. J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, U.A. Wiedemann, Phys. Rev. D 71, 014003 (2005). arXiv:hep-ph/0408216

    Article  ADS  Google Scholar 

  65. A.H. Mueller, D.N. Triantafyllopoulos, Nucl. Phys. B 640, 331 (2002). arXiv:hep-ph/0205167

    Article  ADS  MATH  Google Scholar 

  66. B.Z. Kopeliovich, A. Schafer, A.V. Tarasov, Phys. Rev. D 62, 054022 (2000). arXiv:hep-ph/9908245

    Article  ADS  Google Scholar 

  67. P. Marage et al. (H1 and ZEUS), arXiv:0911.5140 (2009)

  68. M.R. Adams et al. (E665), Phys. Rev. D 54, 3006 (1996)

    Article  ADS  Google Scholar 

  69. M. Arneodo et al. (NMC), Nucl. Phys. B 483, 3 (1997). arXiv:hep-ph/9610231

    Article  ADS  Google Scholar 

  70. F.D. Aaron et al. (H1), Phys. Lett. B 665, 139 (2008). arXiv:0805.2809

    Article  ADS  Google Scholar 

  71. S. Chekanov et al. (ZEUS), Phys. Lett. B 682, 8 (2009). arXiv:0904.1092

    Article  Google Scholar 

  72. L. Frankfurt, A. Radyushkin, M. Strikman, Phys. Rev. D 55, 98 (1997). arXiv:hep-ph/9610274

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Néstor Armesto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albacete, J.L., Armesto, N., Milhano, J.G. et al. AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks. Eur. Phys. J. C 71, 1705 (2011). https://doi.org/10.1140/epjc/s10052-011-1705-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1705-3

Keywords

Navigation