Skip to main content
Log in

Trace anomaly and quasi-particles in finite temperature SU(N) gauge theory

The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider deconfined matter in SU(N) gauge theory as an ideal gas of transversely polarized quasi-particle modes having a temperature-dependent mass m(T). Just above the transition temperature, the mass is assumed to be determined by the critical behavior of the energy density and the screening length in the medium. At high temperature, it becomes proportional to T as the only remaining scale. The resulting (trace anomaly based) interaction measure Δ=(ϵ−3P)/T 4 and energy density are found to agree well with finite temperature SU(3) lattice calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. Boyd et al., Nucl. Phys. B 469, 419 (1996)

    Article  ADS  Google Scholar 

  2. T. Çelik et al., Phys. Lett. B 125, 411 (1983)

    Article  ADS  Google Scholar 

  3. J. Kogut et al., Phys. Rev. Lett. 51, 869 (1983)

    Article  ADS  Google Scholar 

  4. B. Svetitsky, L. Yaffe, Nucl. Phys. B 210(FS6), 423 (1982)

    Article  ADS  Google Scholar 

  5. R. Pisarski, Prog. Theor. Phys. Suppl. 168, 276 (2007)

    Article  ADS  Google Scholar 

  6. M. Panero, Phys. Rev. Lett. 103, 23001 (2009)

    Article  Google Scholar 

  7. S. Datta, S. Gupta, Phys. Rev. D 82, 114505 (2010)

    Article  ADS  Google Scholar 

  8. J.I. Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, 1989)

    MATH  Google Scholar 

  9. A.D. Linde, Phys. Lett. B 96, 289 (1880)

    ADS  Google Scholar 

  10. D.J. Gross, R.D. Pisarski, L.G. Yaffe, Rev. Mod. Phys. 53, 43 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  11. P. Arnold, C.-X. Zhai, Phys. Rev. D 50, 7609 (1994)

    ADS  Google Scholar 

  12. B. Kastening, C.-X. Zhai, Phys. Rev. D 52, 7232 (1995)

    Article  ADS  Google Scholar 

  13. K. Kajantie et al., Phys. Rev. D 67, 105008 (2003)

    Article  ADS  Google Scholar 

  14. F. Karsch, A. Patkos, P. Petreczky, Phys. Lett. B 401, 69 (1997)

    Article  ADS  Google Scholar 

  15. J.O. Andersen, M. Strickland, N. Su, J. High Energy Phys. 1008, 113 (2010)

    Article  ADS  Google Scholar 

  16. J.-P. Blaizot, Nucl. Phys. A 702, 99c (2002)

    Article  ADS  Google Scholar 

  17. A. Rebhan, Nucl. Phys. A 702, 111c (2002)

    Article  ADS  Google Scholar 

  18. A. Peshier, Nucl. Phys. A 702, 128c (2002)

    Article  ADS  Google Scholar 

  19. K. Lichtenegger, D. Zwanziger, Phys. Rev. D 78, 034038 (2008)

    Article  ADS  Google Scholar 

  20. J.O. Andersen et al., Phys. Lett. B 696, 468 (2011)

    Article  ADS  Google Scholar 

  21. A. Chodos et al., Phys. Rev. D 9, 3471 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Baacke, Acta Phys. Pol. B 8, 625 (1977)

    Google Scholar 

  23. M. Asakawa, T. Hatsuda, Nucl. Phys. A 610, 470c (1996)

    Article  ADS  Google Scholar 

  24. H. Leutwyler, in QCD—20 Years Later, ed. by P.M. Zerwas, H. Kastrup (World Scientific, Singapore, 1993), p. 693

    Google Scholar 

  25. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  26. D.E. Miller, Phys. Rep. 443, 55 (2007)

    Article  ADS  Google Scholar 

  27. D. Zwanziger, Phys. Rev. Lett. 94, 182301 (2005)

    Article  ADS  Google Scholar 

  28. R. Pisarski, Phys. Rev. D 74, 121703(R) (2006)

    Article  MathSciNet  ADS  Google Scholar 

  29. O. Andreev, Phys. Rev. D 76, 087702 (2007)

    Article  ADS  Google Scholar 

  30. E. Megias, E. Ruiz Arriola, L.L. Salcedo, Phys. Rev. D 80, 056005 (2009)

    Article  ADS  Google Scholar 

  31. V. Goloviznin, H. Satz, Z. Phys. C 57, 671 (1993)

    Article  ADS  Google Scholar 

  32. A. Peshier et al., Phys. Rev. D 54, 2399 (1996)

    Article  ADS  Google Scholar 

  33. F. Brau, F. Buisseret, Phys. Rev. D 79, 114007 (2009)

    Article  ADS  Google Scholar 

  34. P. Lévai, U. Heinz, Phys. Rev. C 57, 1879 (1998)

    Article  ADS  Google Scholar 

  35. F. Giacosa, arXiv:1009.4588 [hep-ph] (2010)

  36. V. Mathieu, PoS QCD-TNT09:024 (2009)

  37. C.-N. Yang, Phys. Rev. 77, 242 (1950)

    Article  ADS  MATH  Google Scholar 

  38. A. Dumitru et al., arXiv:1011.3820 [hep-ph] (2010)

  39. P.N. Meisinger, T.R. Miller, M.C. Ogilvie, Phys. Rev. D 65, 034009 (2002)

    Article  ADS  Google Scholar 

  40. P. Castorina et al., Eur. Phys. J. C 66, 207 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Satz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castorina, P., Miller, D.E. & Satz, H. Trace anomaly and quasi-particles in finite temperature SU(N) gauge theory. Eur. Phys. J. C 71, 1673 (2011). https://doi.org/10.1140/epjc/s10052-011-1673-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1673-7

Keywords

Navigation