Skip to main content

Advertisement

Log in

MO analysis of the high statistics Belle results on γ γπ + π , π 0 π 0 with chiral constraints

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We reconsider Muskhelishvili–Omnès (MO) dispersive representations of photon–photon scattering to two pions, motivated by the very high statistics results recently released by the Belle collaboration for charged as well as neutral pion pairs and also by recent progress in the determination of the low-energy π π scattering amplitude. Applicability of this formalism is extended beyond 1 GeV by taking into account inelasticity due to \(K\bar{K}\). A modified MO representation is derived which has the advantage that all polynomial ambiguities are collected into the subtraction constants and have simple relations to pion polarizabilities. It is obtained by treating differently the exactly known QED Born term and the other components of the left-hand cut. These components are approximated by a sum over resonances. All resonances up to spin two and masses up to ≃1.3 GeV are included. The tensor contributions to the left-hand cut are found to be numerically important. We perform fits to the data imposing chiral constraints, in particular, using a model independent sum-rule result on the p 6 chiral coupling c 34. Such theoretical constraints are necessary because the experimental errors are dominantly systematic. Results on further p 6 couplings and pion dipole and quadrupole polarizabilities are then derived from the fit. The relevance of the new data for distinguishing between two possible scenarios of isospin breaking in the f 0(980) region is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Bijnens, G. Colangelo, G. Ecker, Ann. Phys. 280, 100 (2000). arXiv:hep-ph/9907333

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. J. Bijnens, G. Colangelo, G. Ecker, J. High Energy Phys. 9902, 020 (1999). arXiv:hep-ph/9902437

    Article  ADS  Google Scholar 

  3. G. Colangelo, Nucl. Phys. A 827, 228C (2009)

    Article  ADS  Google Scholar 

  4. J. Ahrens et al., Eur. Phys. J. A 23, 113 (2005). arXiv:nucl-ex/0407011

    ADS  Google Scholar 

  5. A. Guskov (COMPASS Collaboration), Fizika B 17, 313 (2008)

    ADS  Google Scholar 

  6. T. Mori et al. (Belle Collaboration), J. Phys. Soc. Jpn. 76, 074102 (2007). arXiv:0704.3538 [hep-ex]

    Article  ADS  Google Scholar 

  7. T. Mori et al. (Belle Collaboration), Phys. Rev. D 75, 051101 (2007). arXiv:hep-ex/0610038

    Article  ADS  Google Scholar 

  8. S. Uehara et al. (Belle Collaboration), Phys. Rev. D 78, 052004 (2008). arXiv:0805.3387 [hep-ex]

    ADS  Google Scholar 

  9. S. Uehara et al. (BELLE Collaboration), Phys. Rev. D 79, 052009 (2009). arXiv:0903.3697 [hep-ex]

    Article  ADS  Google Scholar 

  10. J.R. Batley et al. (NA48/2 Collaboration), Eur. Phys. J. C 54, 411 (2008)

    Article  ADS  Google Scholar 

  11. J.R. Batley et al. (NA48/2 Collaboration), Phys. Lett. B 633, 173 (2006). arXiv:hep-ex/0511056

    ADS  Google Scholar 

  12. J.R. Batley et al. Eur. Phys. J. C 64, 589 (2009)

    Article  ADS  Google Scholar 

  13. B. Adeva et al. (DIRAC Collaboration), Phys. Lett. B 619, 50 (2005). arXiv:hep-ex/0504044

    Article  ADS  Google Scholar 

  14. S. Pislak et al. (BNL-E865 Collaboration), Phys. Rev. Lett. 87, 221801 (2001). arXiv:hep-ex/0106071

    Article  ADS  Google Scholar 

  15. R. Oehme, Int. J. Mod. Phys. A 10, 1995 (1995). arXiv:hep-th/9412040

    Article  ADS  Google Scholar 

  16. R. Omnès, Nuovo Cimento 8, 316 (1958)

    Article  MATH  Google Scholar 

  17. N.I. Muskhelishvili, Singular Integral Equations (Noordhof, Groningen, 1953)

    MATH  Google Scholar 

  18. M. Gourdin, A. Martin, Nuovo Cimento 17, 224 (1960)

    Article  MATH  Google Scholar 

  19. R.L. Goble, J.L. Rosner, Phys. Rev. D 5, 2345 (1972)

    Article  ADS  Google Scholar 

  20. R.L. Goble, R. Rosenfeld, J.L. Rosner, Phys. Rev. D 39, 3264 (1989)

    Article  ADS  Google Scholar 

  21. D. Morgan, M.R. Pennington, Phys. Lett. B 192, 207 (1987)

    Article  ADS  Google Scholar 

  22. D. Morgan, M.R. Pennington, Phys. Lett. B 272, 134 (1991)

    Article  ADS  Google Scholar 

  23. J.F. Donoghue, B.R. Holstein, Phys. Rev. D 48, 137 (1993). arXiv:hep-ph/9302203

    ADS  Google Scholar 

  24. J.F. Donoghue, B.R. Holstein, Y.C. Lin, Phys. Rev. D 37, 2423 (1988)

    Article  ADS  Google Scholar 

  25. J. Bijnens, F. Cornet, Nucl. Phys. B 296, 557 (1988)

    Article  ADS  Google Scholar 

  26. K. Sundermeyer, A coupled channel analysis of the reactions gamma + Gamma → Pi + Pi And Gamma + Gamma → K + Anti-K. Preprint DESY 74/17

  27. O. Babelon, J.L. Basdevant, D. Caillerie, M. Gourdin, G. Mennessier, Nucl. Phys. B 114, 252 (1976)

    Article  ADS  Google Scholar 

  28. Y. Mao, X.G. Wang, O. Zhang, H.Q. Zheng, Z.Y. Zhou, Phys. Rev. D 79, 116008 (2009). arXiv:0904.1445 [hep-ph]

    Article  ADS  Google Scholar 

  29. G. Mennessier, Z. Phys. C 16, 241 (1983)

    Article  ADS  Google Scholar 

  30. M. Boglione, M.R. Pennington, Eur. Phys. J. C 9, 11 (1999). arXiv:hep-ph/9812258

    ADS  Google Scholar 

  31. J.A. Oller, L. Roca, C. Schat, Phys. Lett. B 659, 201 (2008). arXiv:0708.1659 [hep-ph]

    Article  ADS  Google Scholar 

  32. N.N. Achasov, G.N. Shestakov, Phys. Rev. D 77, 074020 (2008). arXiv:0712.0885 [hep-ph]

    Article  ADS  Google Scholar 

  33. G. Mennessier, S. Narison, W. Ochs, Phys. Lett. B 665, 205 (2008). arXiv:0804.4452 [hep-ph]

    Article  ADS  Google Scholar 

  34. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1960)

    Google Scholar 

  35. M. Jacob, G.C. Wick, Ann. Phys. 7, 404 (1959) [Ann. Phys. 281, 774 (2000)]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. J.F. Donoghue, J. Gasser, H. Leutwyler, Nucl. Phys. B 343, 341 (1990)

    Article  ADS  Google Scholar 

  37. B. Moussallam, Eur. Phys. J. C 14, 111 (2000). arXiv:hep-ph/9909292

    ADS  Google Scholar 

  38. F.E. Low, Phys. Rev. 96, 1428 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. M. Gell-Mann, M.L. Goldberger, Phys. Rev. 96, 1433 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. H.D.I. Abarbanel, M.L. Goldberger, Phys. Rev. 165, 1594 (1968)

    Article  ADS  Google Scholar 

  41. B. Hyams et al., Nucl. Phys. B 64, 134 (1973). AIP Conf. Proc. 13, 206 (1973)

    Article  ADS  Google Scholar 

  42. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  43. P. Ko, Phys. Rev. D 41, 1531 (1990)

    ADS  Google Scholar 

  44. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)

    Article  ADS  Google Scholar 

  45. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  46. B. Collick et al., Phys. Rev. Lett. 53, 2374 (1984)

    Article  ADS  Google Scholar 

  47. M. Zielinski et al., Phys. Rev. D 30, 1855 (1984)

    Article  ADS  Google Scholar 

  48. G.T. Condo, T. Handler, W.M. Bugg, G.R. Blackett, M. Pisharody, K.A. Danyo, Phys. Rev. D 48, 3045 (1993)

    Article  ADS  Google Scholar 

  49. M. Nozar et al. (CLAS Collaboration), Phys. Rev. Lett. 102, 102002 (2009). arXiv:0805.4438 [hep-ex]

    Article  ADS  Google Scholar 

  50. H.J. Lipkin, Phys. Lett. B 72, 249 (1977)

    Article  ADS  Google Scholar 

  51. S. Bellucci, J. Gasser, M.E. Sainio, Nucl. Phys. B 423, 80 (1994) [Erratum: Nucl. Phys. B 431, 413 (1994)]. arXiv:hep-ph/9401206

    Article  ADS  Google Scholar 

  52. U. Bürgi, Nucl. Phys. B 479, 392 (1996). arXiv:hep-ph/9602429

    Article  ADS  Google Scholar 

  53. J. Gasser, M.A. Ivanov, M.E. Sainio, Nucl. Phys. B 728, 31 (2005). arXiv:hep-ph/0506265

    Article  ADS  Google Scholar 

  54. J. Gasser, M.A. Ivanov, M.E. Sainio, Nucl. Phys. B 745, 84 (2006). arXiv:hep-ph/0602234

    Article  MATH  ADS  Google Scholar 

  55. K. Maltman, C.E. Wolfe, Phys. Rev. D 59, 096003 (1999). arXiv:hep-ph/9810441

    Article  ADS  Google Scholar 

  56. S. Dürr, J. Kambor, Phys. Rev. D 61, 114025 (2000). arXiv:hep-ph/9907539

    Article  ADS  Google Scholar 

  57. M. Knecht, B. Moussallam, J. Stern, Nucl. Phys. B 429, 125 (1994). arXiv:hep-ph/9402318

    Article  ADS  Google Scholar 

  58. J. Gasser, C. Haefeli, M.A. Ivanov, M. Schmid, Phys. Lett. B 675, 49 (2009). arXiv:0903.0801 [hep-ph]

    Article  ADS  Google Scholar 

  59. G. Amorós, J. Bijnens, P. Talavera, Nucl. Phys. B 568, 319 (2000). arXiv:hep-ph/9907264

    Article  ADS  Google Scholar 

  60. H. Terazawa, Phys. Rev. Lett. 26, 1207 (1971)

    Article  ADS  Google Scholar 

  61. B.R. Martin, D. Morgan, G. Shaw, Pion–Pion Interactions in Particle Physics (Academic Press, London, 1976)

    Google Scholar 

  62. S.M. Roy, Phys. Lett. B 36, 353 (1971)

    Article  ADS  Google Scholar 

  63. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001). arXiv:hep-ph/0005297

    Article  MATH  ADS  Google Scholar 

  64. D.V. Bugg, B.S. Zou, A.V. Sarantsev, Nucl. Phys. B 471, 59 (1996)

    Article  ADS  Google Scholar 

  65. R. Kamiński, L. Leśniak, K. Rybicki, Z. Phys. C 74, 79 (1997). arXiv:hep-ph/9606362

    Google Scholar 

  66. R. Kamiński, J.R. Peláez, F.J. Ynduráin, Phys. Rev. D 77, 054015 (2008). arXiv:0710.1150 [hep-ph]

    Article  ADS  Google Scholar 

  67. R. García-Martín, R. Kamiński, J.R. Peláez, F.J. Ynduráin, arXiv:0906.5467 [hep-ph]

  68. D.H. Cohen, D.S. Ayres, R. Diebold, S.L. Kramer, A.J. Pawlicki, A.B. Wicklund, Phys. Rev. D 22, 2595 (1980)

    Article  ADS  Google Scholar 

  69. A. Etkin et al., Phys. Rev. D 25, 1786 (1982)

    Article  ADS  Google Scholar 

  70. K.L. Au, D. Morgan, M.R. Pennington, Phys. Rev. D 35, 1633 (1987)

    Article  ADS  Google Scholar 

  71. P. Büttiker, S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 33, 409 (2004). arXiv:hep-ph/0310283

    Article  ADS  Google Scholar 

  72. M.J. Losty et al., Nucl. Phys. B 69, 185 (1974)

    Article  ADS  Google Scholar 

  73. W. Hoogland et al., Nucl. Phys. B 126, 109 (1977)

    Article  ADS  Google Scholar 

  74. H. Marsiske et al. (Crystal Ball Collaboration), Phys. Rev. D 41, 3324 (1990)

    Article  ADS  Google Scholar 

  75. J. Boyer et al., Phys. Rev. D 42, 1350 (1990)

    Article  ADS  Google Scholar 

  76. H.J. Behrend et al. (CELLO Collaboration), Z. Phys. C 56, 381 (1992)

    Article  ADS  Google Scholar 

  77. G. Ecker, Acta Phys. Pol. B 38, 2753 (2007). arXiv:hep-ph/0702263

    MathSciNet  ADS  Google Scholar 

  78. M.R. Pennington, T. Mori, S. Uehara, Y. Watanabe, Eur. Phys. J. C 56, 1 (2008). arXiv:0803.3389 [hep-ph]

    Article  ADS  Google Scholar 

  79. N.N. Achasov, G.N. Shestakov, Phys. Rev. D 70, 074015 (2004). arXiv:hep-ph/0405129

    Article  ADS  Google Scholar 

  80. C. Hanhart, B. Kubis, J.R. Peláez, Phys. Rev. D 76, 074028 (2007). arXiv:0707.0262 [hep-ph]

    Article  ADS  Google Scholar 

  81. J. Bijnens, J. Prades, Nucl. Phys. B 490, 239 (1997). arXiv:hep-ph/9610360

    Article  ADS  Google Scholar 

  82. L.V. Fil’kov, V.L. Kashevarov, Phys. Rev. C 73, 035210 (2006). arXiv:nucl-th/0512047

    Article  ADS  Google Scholar 

  83. V. Bernard, D. Vautherin, Phys. Rev. D 40, 1615 (1989)

    Article  ADS  Google Scholar 

  84. B. Hiller, W. Broniowski, A.A. Osipov, A.H. Blin, Phys. Lett. B 681, 147 (2009). arXiv:0908.0159 [hep-ph]

    Article  ADS  Google Scholar 

  85. L.V. Fil’kov, V.L. Kashevarov, Phys. Rev. C 72, 035211 (2005). arXiv:nucl-th/0505058

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Moussallam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Martín, R., Moussallam, B. MO analysis of the high statistics Belle results on γ γπ + π , π 0 π 0 with chiral constraints. Eur. Phys. J. C 70, 155–175 (2010). https://doi.org/10.1140/epjc/s10052-010-1471-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1471-7

Keywords

Navigation