Skip to main content

Advertisement

Log in

QCD sum rule for nucleon in nuclear matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider the two-point function of nucleon current in nuclear matter and write a QCD sum rule to analyse the residue of the nucleon pole as a function of nuclear density. The nucleon self-energy needed for the sum rule is taken as input from calculations using phenomenological N N potential. Our result shows a decrease in the residue with increasing nuclear density, as is known to be the case with similar quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 517 (1985)

    Article  ADS  Google Scholar 

  3. J. Gasser, H. Leutwyler, Phys. Lett. B 184, 83 (1989)

    Article  ADS  Google Scholar 

  4. P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989)

    Article  ADS  Google Scholar 

  5. J. Goity, H. Leutwyler, Phys. Lett. B 228, 517 (1989)

    Article  ADS  Google Scholar 

  6. H. Leutwyler, A. Smilga, Nucl. Phys. B 342, 302 (1990)

    Article  ADS  Google Scholar 

  7. A. Schenk, Phys. Rev. D 47, 5138 (1993)

    Article  ADS  Google Scholar 

  8. D. Toublan, Phys. Rev. D 56, 5629 (1997)

    Article  ADS  Google Scholar 

  9. B.L. Ioffe, Nucl. Phys. B 188, 317 (1981)

    Article  ADS  Google Scholar 

  10. Y. Chung et al., Nucl. Phys. B 197, 55 (1982)

    Article  ADS  Google Scholar 

  11. S. Mallik, H. Mishra, Eur. Phys. J. C 50, 889 (2007)

    Article  ADS  Google Scholar 

  12. T. Becher, H. Leutwyler, J. High Energy Phys. 0106, 017 (2001)

    Article  ADS  Google Scholar 

  13. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  14. D. Montano, H.D. Politzer, M.B. Wise, Nucl. Phys. B 375, 507 (1992)

    Article  ADS  Google Scholar 

  15. E.M. Henley, J. Pasupathy, Nucl. Phys. A 556, 467 (1993)

    Article  ADS  Google Scholar 

  16. E.G. Drukarev, E.M. Levin, Prog. Part. Nucl. Phys. 27, 77 (1991)

    Article  ADS  Google Scholar 

  17. T.D. Cohen, R.J. Furnstahl, D.K. Griegel, X. Jin, Prog. Part. Nucl. Phys. 35, 221 (1995)

    Article  ADS  Google Scholar 

  18. R. Brockmann, R. Machleidt, Phys. Rev. C 42, 1965 (1990)

    Article  ADS  Google Scholar 

  19. B. tar Haar, R. Malfliet, Phys. Rep. 149, 207 (1987)

    Article  ADS  Google Scholar 

  20. X. Jin, M. Nielsen, T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 49, 464 (1994)

    Article  ADS  Google Scholar 

  21. A.J. Niemi, G.W. Semenoff, Ann. Phys. 152, 105 (1984)

    Article  ADS  Google Scholar 

  22. N.P. Landsmann, Ch.G. van Weert, Phys. Rep. 145, 141 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Mallik, S. Sarkar, Eur. Phys. J. C 61, 489 (2009)

    Article  ADS  Google Scholar 

  24. H.A. Weldon, Phys. Rev. D 28, 2007 (1983)

    Article  ADS  Google Scholar 

  25. R.L. Kobes, G.W. Semenoff, Nucl. Phys. B 260, 714 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  26. B.L. Ioffe, Z. Phys. C 18, 67 (1983)

    Article  ADS  Google Scholar 

  27. E.V. Shuryak, The QCD Vacuum, Hadrons and Superdense Matter, 2nd edn. (World Scientific, Singapore, 2004)

    Google Scholar 

  28. D.J. Gross, in Methods of Field Theory, ed. by R. Balian, J. Zinn-Justin (North Holland, Amsterdam, 1976)

    Google Scholar 

  29. S. Mallik, A. Nyffeler, Phys. Rev. C 63, 065204 (2001)

    Article  ADS  Google Scholar 

  30. J. Gasser, H. Leutwyler, M.E. Sainio, Phys. Lett. B 253, 252 (1991)

    Article  ADS  Google Scholar 

  31. M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)

    Article  ADS  Google Scholar 

  32. H. Leutwyler, Phys. Lett. B 378, 313 (1996)

    Article  ADS  Google Scholar 

  33. B.L. Ioffe, A.V. Smilga, Nucl. Phys. B 232, 109 (1984)

    Article  ADS  Google Scholar 

  34. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, 1995). The Advanced Book Program

    Google Scholar 

  35. A.D. Martin et al., Eur. Phys. J. C 4, 463 (1998)

    Article  ADS  Google Scholar 

  36. F. Ravndal, Phys. Lett. B 450, 320 (1999)

    Article  ADS  Google Scholar 

  37. U.G. Meissner, J.A. Oller, A. Wirzba, Ann. Phys. 297, 27 (2002)

    Article  ADS  Google Scholar 

  38. S. Mallik, S. Sarkar, Phys. Rev. C 69, 015204 (2004)

    Article  ADS  Google Scholar 

  39. H. Leutwyler, in QCD Twenty Years Later, vol. 2, ed. by P.M. Zerwas, H.A. Kastrup (World Scientific, Singapore, 1993)

    Google Scholar 

  40. A. Bazavov et al., arXiv:0903.4379

  41. R.S. Bhalerao, R. Gavai, arXiv:0812.1619 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mallik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallik, S., Sarkar, S. QCD sum rule for nucleon in nuclear matter. Eur. Phys. J. C 65, 247–255 (2010). https://doi.org/10.1140/epjc/s10052-009-1182-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1182-0

PACS

Navigation