Skip to main content
Log in

Abelian 2-form gauge theory: superfield formalism

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We derive the off-shell nilpotent Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations for all the fields of a free Abelian 2-form gauge theory by exploiting the geometrical superfield approach to the BRST formalism. The above four (3+1)-dimensional (4D) theory is considered on a (4, 2)-dimensional supermanifold parameterized by the four even spacetime variables x μ (with μ=0,1,2,3) and a pair of odd Grassmannian variables θ and \(\bar{\theta}\) (with \(\theta^{2}=\bar{\theta}^{2}=0,\theta\bar{\theta}+\bar{\theta}\theta=0\) ). One of the salient features of our present investigation is that the above nilpotent (anti-) BRST symmetry transformations turn out to be absolutely anticommuting due to the presence of a Curci–Ferrari (CF) type of restriction. The latter condition emerges due to the application of our present superfield formalism. The actual CF condition, as is well known, is the hallmark of a 4D non-Abelian 1-form gauge theory. We demonstrate that our present 4D Abelian 2-form gauge theory imbibes some of the key signatures of the 4D non-Abelian 1-form gauge theory. We briefly comment on the generalization of our superfield approach to the case of Abelian 3-form gauge theory in four, (3+1), dimensions of spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Thierry-Mieg, J. Math. Phys. 21, 2834 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Thierry-Mieg, Nuovo Cim. A 56, 396 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Quiros, F.J. De Urries, J. Hoyos, M.L. Mazon, E. Rodrigues, J. Math. Phys. 22, 1767 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. L. Bonora, M. Tonin, Phys. Lett. B 98, 48 (1981)

    Article  ADS  Google Scholar 

  5. L. Bonora, P. Pasti, M. Tonin, Nuovo Cim. A 63, 353 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Delbourgo, P.D. Jarvis, J. Phys. A, Math. Gen. 15, 611 (1981)

    Article  MathSciNet  Google Scholar 

  7. R. Delbourgo, P.D. Jarvis, G. Thompson, Phys. Lett. B 109, 25 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Baulieu, J. Thierry-Mieg, Nucl. Phys. B 197, 477 (1982)

    Article  ADS  Google Scholar 

  9. L. Alvarez-Gaumé, L. Baulieu, Nucl. Phys. B 212, 255 (1983)

    Article  ADS  Google Scholar 

  10. S. Weinberg, The Quantum Theory of Fields: Modern Applications, vol. 2 (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  11. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)

    MATH  Google Scholar 

  12. D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990)

    MATH  Google Scholar 

  13. J.W. van Holten, Phys. Rev. Lett. 64, 2863 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. N. Nakanishi, I. Ojima, Covariant Operator Formalism of Gauge Theory and Quantum Gravity (World Scientific, Singapore, 1990)

    Google Scholar 

  15. R.P. Malik, Phys. Lett. B 584, 210 (2004). hep-th/0311001

    Article  ADS  MathSciNet  Google Scholar 

  16. R.P. Malik, J. Phys. A, Math. Gen. 37, 5261 (2004). hep-th/0311193

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. R.P. Malik, Eur. Phys. J. C 45, 513 (2006). hep-th/0506109

    Article  ADS  MathSciNet  Google Scholar 

  18. R.P. Malik, B.P. Mandal, Eur. Phys. J. C 47, 219 (2006). hep-th/0512334

    Article  ADS  MathSciNet  Google Scholar 

  19. R.P. Malik, Eur. Phys. J. C 47, 227 (2006). hep-th/0507127

    Article  ADS  MathSciNet  Google Scholar 

  20. R.P. Malik, Mod. Phys. Lett. A 20, 1767 (2005). hep-th/0402123

    Article  ADS  MathSciNet  Google Scholar 

  21. R.P. Malik, Int. J. Mod. Phys. A 20, 4899 (2005). hep-th/0402005

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. R.P. Malik, Int. J. Mod. Phys. A 20, 7285 (2005). (Erratum) hep-th/0402005

    Article  ADS  MathSciNet  Google Scholar 

  23. R.P. Malik, Eur. Phys. J. C 48, 825 (2006). hep-th/0508226

    Article  ADS  Google Scholar 

  24. R.P. Malik, J. Phys. A, Math. Gen. 39, 10575 (2006). hep-th/0510164

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. R.P. Malik, Eur. Phys. J. C 51, 169 (2007). hep-th/0603049

    Article  ADS  Google Scholar 

  26. R.P. Malik, J. Phys. A, Math. Theor. 40, 4877 (2007). hep-th/0605213

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. R.P. Malik, hep-th/0510029. appeared in the Proc. of the International Workshop on “Supersymmetries and Quantum Symmetries” (SQS’05) held at Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, pp. 399–407

  28. M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  29. J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  30. A. Salam, E. Sezgin (eds.), in Supergravities in Diverse Dimensions (World Scientific, Singapore, 1989)

  31. G. Curci, R. Ferrari, Phys. Lett. B 63, 51 (1976)

    MathSciNet  Google Scholar 

  32. V.I. Ogievetsky, I.V. Palubarinov, Iad. Fiz. 4, 216 (1966)

    Google Scholar 

  33. V.I. Ogievetsky, I.V. Palubarinov, Sov. J. Nucl. Phys. 4, 156 (1967)

    Google Scholar 

  34. S. Deser, Phys. Rev. 187, 1931 (1969)

    Article  ADS  Google Scholar 

  35. A. Aurilia, Y. Takahashi, Prog. Theor. Phys. 66, 693 (1981)

    Article  ADS  Google Scholar 

  36. N. Seiberg, E. Witten, J. High Energy Phys. 9909, 032 (1999)

    Article  MathSciNet  Google Scholar 

  37. E. Harikumar, R.P. Malik, M. Sivakumar, J. Phys. A, Math. Gen. 33, 7149 (2000). hep-th/0004145

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. R.P. Malik, hep-th/0309245. Appeared in the Proc. of the International Workshop on “Supersymmetries and Quantum Symmetries” (SQS’03) held at Bogoliubov Lab. of Theoretical Physics, JINR, Dubna, pp. 321–326

  39. R.P. Malik, J. Phys. A, Math. Gen. 36, 5095 (2003). hep-th/0209136

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. R.P. Malik, Int. J. Mod. Phys. A 19, 5663 (2004). hep-th/0212240

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. R.P. Malik, Int. J. Mod. Phys. A 21, 6513 (2006). hep-th/0212240 (Errata)

    Article  ADS  MathSciNet  Google Scholar 

  42. L. Bonora, R.P. Malik, Phys. Lett. B 655, 75 (2007). arXiv:0707.3922 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  43. R.P. Malik, Int. J. Mod. Phys. A 23, 3685 (2008). arXiv:0704.0064 [hep-th]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. R.P. Malik, arXiv:0706.4168 [hep-th]

  45. R.P. Malik, B.P. Mandal, arXiv:0709.2277 [hep-th]. (To appear in Pramana: J. Phys. (2009))

  46. R.P. Malik, B.P. Mandal, arXiv:0711.2389 [hep-th]

  47. R.P. Malik, Eur. Phys. J. C 55, 687 (2008). arXiv:0802.4129 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Thierry-Mieg, L. Baulieu, Nucl. Phys. B 228, 259 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  49. D.S. Hwang, C.-Y. Lee, J. Math. Phys. 36, 3254 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. D.S. Hwang, C.-Y. Lee, J. Math. Phys. 38, 30 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. R.P. Malik, Eur. Phys. Lett. 84, 31001 (2008). arXiv:0805.4470 [hep-th]

    Article  ADS  Google Scholar 

  52. S. Gupta, R.P. Malik, Eur. Phys. J. C 58, 517 (2008). arXiv:0807.2306 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  53. H. Hata, T. Kugo, N. Ohta, Nucl. Phys. B 178, 527 (1981)

    Article  ADS  Google Scholar 

  54. V.O. Rivelles, L. Sandoval Jr., Rev. Bras. Fis. 21, 374 (1991)

    Google Scholar 

  55. R.P. Malik, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, R.P. Abelian 2-form gauge theory: superfield formalism. Eur. Phys. J. C 60, 457–470 (2009). https://doi.org/10.1140/epjc/s10052-009-0918-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0918-1

PACS

Navigation