Skip to main content
Log in

Thermodynamics of the PNJL model

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

QCD thermodynamics is investigated by means of the Polyakov-loop-extended Nambu–Jona–Lasinio (PNJL) model, in which quarks couple simultaneously to the chiral condensate and to a background temporal gauge field representing Polyakov loop dynamics. The behaviour of the Polyakov loop as a function of temperature is obtained by minimising the thermodynamic potential of the system. A Taylor series expansion of the pressure is performed. Pressure difference and quark number density are then evaluated up to sixth order in the quark chemical potential and compared to the corresponding lattice data. The validity of the Taylor expansion is discussed within our model through a comparison between the full results and the truncated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B 568, 73 (2003)

    Article  MATH  ADS  Google Scholar 

  2. Z. Fodor, S.D. Katz, JHEP 0203, 014 (2002)

    Article  ADS  Google Scholar 

  3. C.R. Allton et al., Phys. Rev. D 66, 074507 (2002)

    Article  ADS  Google Scholar 

  4. C.R. Allton et al., Phys. Rev. D 68, 014507 (2003)

    Article  ADS  Google Scholar 

  5. C.R. Allton et al., Phys. Rev. D 71, 054508 (2005)

    Article  ADS  Google Scholar 

  6. E. Laermann, O. Philipsen, Ann. Rev. Nucl. Part. Sci. 53, 163 (2003)

    Article  ADS  Google Scholar 

  7. P. de Forcrand, O. Philipsen, Nucl. Phys. B 673, 170 (2003)

    Article  ADS  Google Scholar 

  8. M. D’Elia, M.P. Lombardo, Phys. Rev. D 67, 014505 (2003)

    Article  ADS  Google Scholar 

  9. M. D’Elia, M.P. Lombardo, Phys. Rev. D 70, 074509 (2004)

    Article  ADS  Google Scholar 

  10. A. Peshier, B. Kämpfer, O.P. Pavlenko, G. Soff, Phys. Rev. D 54, 2399 (1996)

    Article  ADS  Google Scholar 

  11. P. Levai, U. Heinz, Phys. Rev. C 57, 1879 (1998)

    Article  ADS  Google Scholar 

  12. A. Peshier, B. Kämpfer, G. Soff, Phys. Rev. C 61, 045203 (2000)

    Article  ADS  Google Scholar 

  13. K.K. Szabo, A.I. Toth, JHEP 06, 008 (2003)

    Article  ADS  Google Scholar 

  14. M. Bluhm, B. Kämpfer, G. Soff, J. Phys. G 31, S1151 (2005)

    Article  ADS  Google Scholar 

  15. M. Bluhm, B. Kämpfer, G. Soff, Phys. Lett. B 620, 131 (2005)

    Article  ADS  Google Scholar 

  16. R.D. Pisarski, Phys. Rev. D 62, 111501(R) (2000)

    Article  ADS  Google Scholar 

  17. A. Rebhan, P. Romatschke, Phys. Rev. D 68, 025022 (2003)

    Article  ADS  Google Scholar 

  18. R.A. Schneider, W. Weise, Phys. Rev. C 64, 055201 (2001)

    Article  ADS  Google Scholar 

  19. M.A. Thaler, R.A. Schneider, W. Weise, Phys. Rev. C 69, 035210 (2004)

    Article  ADS  Google Scholar 

  20. A. Drago, M. Gibilisco, C. Ratti, Nucl. Phys. A 742, 165 (2004)

    Article  ADS  Google Scholar 

  21. Y.B. Ivanov, V.V. Skokov, V.D. Toneev, Phys. Rev. D 71, 014005 (2005)

    Article  ADS  Google Scholar 

  22. F. Karsch, K. Redlich, A. Tawfik, Phys. Lett. B 571, 67 (2003)

    Article  MATH  ADS  Google Scholar 

  23. F. Karsch, K. Redlich, A. Tawfik, Eur. Phys. J. C 29, 549 (2003)

    Article  MATH  Google Scholar 

  24. D.H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004)

    Article  ADS  Google Scholar 

  25. C. Ratti, W. Weise, Phys. Rev. D 70, 054013 (2004)

    Article  ADS  Google Scholar 

  26. P.N. Meisinger, M.C. Ogilvie, Phys. Lett. B 379, 163 (1996)

    Article  ADS  Google Scholar 

  27. P.N. Meisinger, T.R. Miller, M.C. Ogilvie, Phys. Rev. D 65, 034009 (2002)

    Article  ADS  Google Scholar 

  28. K. Fukushima, Phys. Lett. B 591, 277 (2004)

    Article  ADS  Google Scholar 

  29. A. Mocsy, F. Sannino, K. Tuominen, Phys. Rev. Lett. 92, 182302 (2004)

    Article  ADS  Google Scholar 

  30. E. Megias, E. Ruiz Arriola, L.L. Salcedo, Phys. Rev. D 74, 065005 (2006)

    Article  ADS  Google Scholar 

  31. C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006)

    Article  ADS  Google Scholar 

  32. C. Ratti, M.A. Thaler, W. Weise, nucl-th/0604025

  33. K. Fukushima, Ann. Phys. 304, 72 (2003)

    Article  MATH  ADS  Google Scholar 

  34. G. Boyd et al., Nucl. Phys. B 469, 419 (1996)

    Article  ADS  Google Scholar 

  35. O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow, Phys. Lett. B 543, 41 (2002)

    Article  ADS  Google Scholar 

  36. O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510 (2005)

    Article  ADS  Google Scholar 

  37. P.N. Meisinger, M.C. Ogilvie, T.R. Miller, Phys. Lett. B 585, 149 (2004)

    Article  ADS  Google Scholar 

  38. A. Dumitru, R.D. Pisarski, D. Zschiesche, Phys. Rev. D 72, 065008 (2005)

    Article  ADS  Google Scholar 

  39. S. Rößner, C. Ratti, W. Weise, forthcoming

  40. S.K. Ghosh, T.K. Mukherjee, M.G. Mustafa, R. Ray, Phys. Rev. D 73, 114007 (2006)

    Article  ADS  Google Scholar 

  41. S. Rößner, C. Ratti, W. Weise, hep-ph/0609281

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ratti.

Additional information

PACS

12.38.Aw; 12.38.Mh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratti, C., Rößner, S., Thaler, M. et al. Thermodynamics of the PNJL model. Eur. Phys. J. C 49, 213–217 (2007). https://doi.org/10.1140/epjc/s10052-006-0065-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0065-x

Keywords

Navigation