Skip to main content
Log in

Displacing of sodium between Voronoi O-centered polyhedrons in sodium tetrasilicate glass

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The sodium tetrasilicate glass has been investigated at temperatures from 300 to 1373 K by molecular dynamics simulation. The dynamics is analyzed through Voronoi Si- and O-centered polyhedrons. The simulation shows that about 78–91% of total Na are placed in non-bridging and free oxygen polyhedrons (NBF-polyhedrons), and most of NBF-polyhedrons contain 1 or 2 Na. Meanwhile Na atoms are not placed in Si-polyhedrons and major bridging polyhedrons (BO-polyhedrons). We also find that more than 77% of Na move in the subspace with volume of 26.6–27.1% of simulation box formed by NBF-polyhedrons, which represents the preferential diffusion pathway for sodium. The diffusion of Na is realized by two ways: (1) alone jumping Na in BO-polyhedrons and (2) the mixed alone jumping Na and cooperative motion of a group of Na in NBF-polyhedrons. Based on the calculation of average time between two consecutive jumps and visiting time for Na atoms, we conclude that the correlation effect is significant for sodium’s diffusion. Moreover, the correlation coefficient strongly decreases with decreasing temperature. The site energy for Na located in NBF-polyhedron is smaller than the one in BO-polyhedron. The transition energy for Na moving from one to other type polyhedrons decreases in the order: BO- to BO- \(\rightarrow \) BO- to NBF- \(\rightarrow \) NBF- \(\rightarrow \) BO- \(\rightarrow \) NBF- to NBF-polyhedron.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: All data generated during this study are contained in this published article.]

References

  1. H. Jabraoui, E.M. Achhal, A. Hasnaoui, J.-L. Garden, Y. Vaills, S. Ouaskit, J. Non-Cryst, Solids 448, 16–26 (2016)

    Google Scholar 

  2. H. Jabraoui, Y. Vaills, A. Hasnaoui, M. Badawi, S. Ouaskit, J. Phys. Chem. B 120(51), 13193 (2016)

    Article  Google Scholar 

  3. A.O. Davidenko, V.E. Sokolskii, A.S. Roik, I.A. Goncharov, Inorg. Mater. 50(12), 1375–1382 (2014)

    Article  Google Scholar 

  4. C.A. Angell, P.A. Cheeseman, S. Tamaddon, J. Phys. (Paris) C9–43, 381 (1982)

    Google Scholar 

  5. F. Kargl, A. Meyer, M.M. Koza, H. Schober, Phys. Rev. B 74, 014304 (2006)

    Article  ADS  Google Scholar 

  6. G.N. Greaves, J. Non Cryst. Solids 71, 203 (1985)

    Article  ADS  Google Scholar 

  7. G.N. Greaves, Miner. Mag 64, 441–446 (2000)

    Article  Google Scholar 

  8. H.W. Nesbitt, G.S. Henderson, G.M. Bancroft, R. Ho, J. Non Cryst. Solids 409, 139–148 (2015)

    Article  ADS  Google Scholar 

  9. P. Jund, W. Kob, R. Jullien, Phys. Rev. B 64, 134303 (2001)

    Article  ADS  Google Scholar 

  10. M. Bauchy, M. Micoulaut, Phys. Rev. B 83, 184118 (2011)

    Article  ADS  Google Scholar 

  11. J. Horbach, W. Kob, K. Binder, Phys. Rev. Lett. 88, 125502 (2002)

    Article  ADS  Google Scholar 

  12. A. Meyer, J. Horbach, W. Kob, F. Kargl, H. Schober, Phys. Rev. Lett. 93, 027801 (2004)

    Article  ADS  Google Scholar 

  13. G.N. Greaves, Phys. Rev. B 52, 6358 (1995)

    Article  ADS  Google Scholar 

  14. M.I. Ojovan, Ceramics 4, 121–134 (2021)

    Article  Google Scholar 

  15. J. Habasaki, K.L. Ngai, Phys. Chem. Chem. Phys. 9, 4673–4689 (2007)

    Article  Google Scholar 

  16. C.T. Moynihan, N.S. Saad, D.C. Tran, A.V. Lesikar, J. Am. Ceram. Soc. 63(7–8), 458–464 (1980)

    Article  Google Scholar 

  17. J. Horbach, W. Kob, K. Binder, Chem. Geol. 174, 87–101 (2001)

    Article  ADS  Google Scholar 

  18. W. Smith, G.N. Greaves, J. Chem. Phys. 103(8), 3091 (1995)

    Article  ADS  Google Scholar 

  19. A.N. Cormack, J. Du, T.R. Zeitler, Phys. Chem. Chem. Phys 4, 3193–3197 (2002)

  20. A.N. Cormack, J. Du, T.R. Zeitler, J. Non Cryst. Solids 323, 147–154 (2003)

    Article  ADS  Google Scholar 

  21. F. Noritake, J. Non Cryst. Solids 553, 120512 (2021)

    Article  Google Scholar 

  22. J. Habasaki, Y. Hiwatari, Phys. Rev. B 69, 144207 (2004)

    Article  ADS  Google Scholar 

  23. X. Li, W. Song, M.M. Smedskjaer, J.C. Mauro, M. Bauchy, J. Non Cryst. Solids X 1, 100013 (2019)

    Article  Google Scholar 

  24. N.V. Yen, M.V. Dung, P.K. Hung, T.B. Van, L.T. Vinh, J. Non Cryst. Solids 566, 120898 (2021)

    Article  Google Scholar 

  25. F. Noritake, K. Kawamura, T. Yoshino, E. Takahashi, J. Non Cryst. Solids 358, 3109–3118 (2012)

    Article  ADS  Google Scholar 

  26. M. Fábián, P. Jóvári, E. Sváb, G. Més záros, T. Proffen, E. Veress (2007) J. Phys. Condens. Matter. 19: 335209

  27. F. Noritake, K. Kawamura, J. Non Cryst. Solids 447, 141–149 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FN conducted the models; LTS, NVY, and NTT analyzed the data; LTS, NVY, and PKH wrote the manuscript; PKH provided the main idea of this paper and edited the manuscript.

Corresponding author

Correspondence to N.  V. Yen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San, L. ., Yen, N. ., Thao, N. . et al. Displacing of sodium between Voronoi O-centered polyhedrons in sodium tetrasilicate glass. Eur. Phys. J. B 94, 241 (2021). https://doi.org/10.1140/epjb/s10051-021-00243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00243-3

Navigation