Skip to main content
Log in

Coulomb screening in graphene with topological defects

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We analyze the screening of an external Coulomb charge in gapless graphene cone, which is taken as a prototype of a topological defect. In the subcritical regime, the induced charge is calculated using both the Green’s function and the Friedel sum rule. The dependence of the polarization charge on the Coulomb strength obtained from the Green’s function clearly shows the effect of the conical defect and indicates that the critical charge itself depends on the sample topology. Similar analysis using the Friedel sum rule indicates that the two results agree for low values of the Coulomb charge but differ for the higher strengths, especially in the presence of the conical defect. For a given subcritical charge, the transport cross-section has a higher value in the presence of the conical defect. In the supercritical regime we show that the coefficient of the power law tail of polarization charge density can be expressed as a summation of functions which vary log periodically with the distance from the Coulomb impurity. The period of variation depends on the conical defect. In the presence of the conical defect, the Fano resonances begin to appear in the transport cross-section for a lower value of the Coulomb charge. For both sub and supercritical regime we derive the dependence of LDOS on the conical defect. The effects of generalized boundary condition on the physical observables are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.I. Katsnelson, Phys. Rev. B 74, 201401(R) (2006)

    Article  ADS  Google Scholar 

  2. T. Ando, J. Phys. Soc. Jpn 75, 074716 (2006)

    Article  ADS  Google Scholar 

  3. A.V. Shytov, M.I. Katsnelson, L.S. Levitov, Phys. Rev. Lett. 99, 236801 (2007)

    Article  ADS  Google Scholar 

  4. A.V. Shytov, M.I. Katsnelson, L.S. Levitov, Phys. Rev. Lett. 99, 246802 (2007)

    Article  ADS  Google Scholar 

  5. W. Greiner, B. Muller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer-Verlag, Berlin, 1985)

  6. A. Shytov, M. Rudner, N. Gu, M. Katsnelson, L. Levitov, Solid State Commun. 149, 1087 (2009)

    Article  ADS  Google Scholar 

  7. K.S. Gupta, S. Sen, Mod. Phys. Lett. A 24, 99 (2009)

    Article  MATH  ADS  Google Scholar 

  8. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012)

    Article  ADS  Google Scholar 

  9. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007)

    Article  ADS  Google Scholar 

  10. E.H. Hwang, S. Adam, S. Das Sharma, Phys. Rev. Lett. 98, 186806 (2007)

    Article  ADS  Google Scholar 

  11. J.H. Chen et al., Nat. Phys. 4, 377 (2008)

    Article  Google Scholar 

  12. N.M.R. Peres, Rev. Mod. Phys. 82, 2673 (2010)

    Article  ADS  Google Scholar 

  13. S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  14. T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, Solid State Commun. 195, 88 (2014)

    Article  ADS  Google Scholar 

  15. E.H. Wichmann, N.M. Kroll, Phys. Rev. 101, 843 (1956)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. P.C. Martin, R.J. Glauber, Phys. Rev. 109, 1307 (1958)

    Article  MATH  ADS  Google Scholar 

  17. L.S. Brown, R.N. Cahn, L.D. McLerran, Phys. Rev. D 12, 581 (1975)

    Article  ADS  Google Scholar 

  18. A.I. Milstein, V.M. Strakhovenko, Phys. Lett. A 90, 447 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  19. A.I. Milstein, V.M. Strakhovenko, Zh. Eksp. Teor. Fiz. 84, 1247 (1983) [Sov. Phys. J. Exp. Theor. Phys. 57, 722 (1983)]

    Google Scholar 

  20. I.S. Terekhov, A.I. Milstein, V.N. Kotov, O.P. Sushkov, Phys. Rev. Lett. 100, 076803 (2008)

    Article  ADS  Google Scholar 

  21. J. Friedel, Philos. Mag. 43, 153 (1952)

    Article  MATH  Google Scholar 

  22. G.D. Mahan, in Many-Particle Physics (Plenum, New York, 2000), p. 195

  23. A. Moroz, Phys. Lett. B 358, 305 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Moroz, Phys. Rev. A 53, 669 (1996)

    Article  ADS  Google Scholar 

  25. D.H. Lin, Phys. Rev. A 72, 012701 (2005)

    Article  ADS  Google Scholar 

  26. D.H. Lin, Phys. Rev. A 73, 052113 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  27. D.H. Lin, J. Math. Phys. 47, 042302 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  28. Yang Wang et al., Science 340, 734 (2013)

    Article  ADS  Google Scholar 

  29. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 406, 771 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 85, 5190 (2000)

    Article  ADS  Google Scholar 

  31. P.E. Lammert, V.H. Crespi, Phys. Rev. B 69, 035406 (2004)

    Article  ADS  Google Scholar 

  32. D.V. Kolesnikov, V.A. Osipov, Eur. Phys. J. B 49, 465 (2006)

    Article  ADS  Google Scholar 

  33. Y.A. Sitenko, N.D. Vlasii, Nucl. Phys. B 787, 241 (2007)

    Article  ADS  Google Scholar 

  34. A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B 763, 293 (2007)

    Article  MATH  ADS  Google Scholar 

  35. C. Furtado, F. Moraes, A.M. de M. Carvalho, Phys. Lett. A 372, 5368 (2008)

    Article  MATH  ADS  Google Scholar 

  36. M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Roy, M. Stone, J. Phys. A 43, 015203 (2010)

    Article  ADS  Google Scholar 

  38. B. Chakraborty, K.S. Gupta, S. Sen, Phys. Rev. B 83, 115412 (2011)

    Article  ADS  Google Scholar 

  39. H. Unlu, N.J.M. Horing, in Low Dimensional Semiconductor Structures: Characterization, Modeling and Applications (Springer-Verlag, Berlin, 2013), Chap. 7, p. 125

  40. Yusuke Nishida, Phys. Rev. B 90, 165414 (2014)

    Article  ADS  Google Scholar 

  41. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  42. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010)

    Article  ADS  Google Scholar 

  43. K.S. Gupta, S. Sen, Phys. Rev. B 78, 205429 (2008)

    Article  ADS  Google Scholar 

  44. K.S. Gupta, A. Samsarov, S. Sen, Eur. Phys. J. B 73, 389 (2010)

    Article  ADS  Google Scholar 

  45. B. Chakraborty, K.S. Gupta, S. Sen, J. Phys. A 46, 055303 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  46. D.S. Novikov, Phys. Rev. B 76, 245435 (2007)

    Article  ADS  Google Scholar 

  47. M. Reed, B. Simon, in Methods of Modern Mathematical Physics (Academic Press, New York, 1972), Vol. 2

  48. H. Falomir, P.A.G. Pisani, J. Phys. A 34, 4143 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. M. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions (Dover, New York, 1970), p. 504

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baishali Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, B., Gupta, K.S. & Sen, S. Coulomb screening in graphene with topological defects. Eur. Phys. J. B 88, 155 (2015). https://doi.org/10.1140/epjb/e2015-60129-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60129-y

Keywords

Navigation