Skip to main content
Log in

Scale-free homophilic network

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

An important aspect governing the growth of complex networks is homophily, which is defined as the tendency of sites to link with others which are similar to themselves. Here, we modify the preferential attachment from Barabási-Albert model by including a homophilic term. Comparisons are made with the Barabási-Albert model, fitness model and our present model considering its topological properties: degree distribution, time dependence of the connectivity, shortest path length and clustering coefficient. We verify the existence of a region where the characteristics of sites play an important role in the rate of gaining links as well as in the number of links between sites with similar and dissimilar characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Watts, Small Worlds: The Dynamics of networks between Order and Randomness (Princeton University Press, Princeton, 2003)

  2. A.-L. Barabási, Linked: The New Science of Networks (Perseus Books Group, Cambridge, 2002)

  3. S. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, Oxford, 2003)

  4. G.A. Mendes, L.R. da Silva, H.J. Herrmann, Physica A 391, 362 (2012)

    Article  ADS  Google Scholar 

  5. P.G. Lind, H.J. Herrmann, J.S. Andrade Jr., L.R. da Silva, Europhys. Lett. 78, 68005 (2007)

    Article  ADS  Google Scholar 

  6. P.G. Lind, L.R. da Silva, J.S. Andrade Jr., H.J. Herrmann, Phys. Rev. E 76, 036117 (2007)

    Article  ADS  Google Scholar 

  7. G.L. Mamede, N.A.M. Araújo, C.M. Schneider, J.C. de Araújo, H.J. Herrmann, Proc. Natl. Acad. Sci. USA 109, 7191 (2012)

    Article  ADS  Google Scholar 

  8. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  9. L.A.N. Amaral, A. Scala, M. Barthélemy, H.E. Stanley, Proc. Natl. Acad. Sci. USA 97, 509 (2000)

    Article  Google Scholar 

  10. C.M. Schneider, A.A. Moreira, J.S. Andrade Jr., S. Havlin, H.J. Herrmann, Proc. Natl. Acad. Sci. USA 108, 3838 (2011)

    Article  ADS  Google Scholar 

  11. C.M. Schneider, N.A.M. Araújo, S. Havlin, H.J. Herrmann, arXiv:1106.3234v1 [cond-mat-stat-mech] (2011)

  12. R.F.S. Andrade, J.S. Andrade Jr., H.J. Herrmann, Phys. Rev. E 79, 036105 (2009)

    Article  ADS  Google Scholar 

  13. N.A.M. Araújo, R.F.S. Andrade, H.J. Herrmann, Phys. Rev. E 82, 046109 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. V.H.P. Louzada, N.A.M. Araújo, J.S. Andrade Jr., H.J. Herrmann, Sci. Rep. 2, 658 (2012)

    Article  Google Scholar 

  15. S. Aral, L. Muchnik, A. Sundararajan, Proc. Natl. Acad. Sci. USA 106, 21544 (2009)

    Article  ADS  Google Scholar 

  16. N.N. Chung, L.Y. Chew, J. Zhou, C.H. Lai, Europhys. Lett. 98, 58004 (2012)

    Article  ADS  Google Scholar 

  17. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  18. L. da F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)

    Article  ADS  Google Scholar 

  19. G. Bianconi, A.-L. Barabási, Europhys. Lett. 54, 036112 (2001)

    Google Scholar 

  20. G. Caldarelli, A. Capocci, P. De Los Rios, M.A. Munoz, Phys. Rev. Lett. 89, 258702 (2002)

    Article  ADS  Google Scholar 

  21. G. Bianconi, P. Pin, M. Marsili, Proc. Natl. Acad. Sci. USA 106, 11433 (2009)

    Article  ADS  Google Scholar 

  22. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MATH  Google Scholar 

  23. G.A. Mendes, L.R. da Silva, Braz. J. Phys. 74, 47 (2002)

    Google Scholar 

  24. L. Ferretti, M. Cortelezzi, Phys. Rev. E 84, 016103 (2011)

    Article  ADS  Google Scholar 

  25. L. Ferretti, M. Cortelezzi, B. Yang, G. Marmorini, G. Bianconi, Phys. Rev. E 85, 066110 (2012)

    Article  ADS  Google Scholar 

  26. W.N.H.C. Shrum Jr., S.M.D. Hunter, Sociol. Educ. 61, 227 (1988)

    Article  Google Scholar 

  27. S.H. Yook, Z.N. Oltvai, A.-L Barabási, Proteomics 4, 928 (2004)

    Article  Google Scholar 

  28. J. Park, A.-L. Barabási, Proc. Natl. Acad. Sci. USA 104, 17916 (2007)

    Article  ADS  Google Scholar 

  29. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  30. M.E.J. Newman, J. Park, Phys. Rev. E 68, 036122 (2003)

    Article  ADS  Google Scholar 

  31. M. McPherson, L. Smith-Lovin, J.M. Cook, Annu. Rev. Soc. 27, 415 (2001)

    Article  Google Scholar 

  32. S. Cuenda, J.A. Crespo, Europhys. Lett. 95, 38002 (2011)

    Article  ADS  Google Scholar 

  33. R.D. Alba, J. Math. Soc. 3, 113 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. S.B. Seidman, Social Networks 5, 97 (1983)

    Article  MathSciNet  Google Scholar 

  35. L.D. Sailer, S.J.C. Gaulin, Am. Anthropol. 86, 41 (1984)

    Article  Google Scholar 

  36. S.P. Borgatti, M.G. Everett, P.R. Shirey, Social Networks 12, 337 (1990)

    Article  MathSciNet  Google Scholar 

  37. D.R. White, F. Haray, Sociological Methodology 31, 305 (2001)

    Article  Google Scholar 

  38. N.A. Christakis, J.H. Fowler, N. Engl. J. Med. 357, 370 (2007)

    Article  Google Scholar 

  39. M.E.J. Newman, G.T. Parkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, Oxford, 1999)

  40. J.S. Andrade Jr., H.J. Herrmann, R.F.S. Andrade, L.R. da Silva, Phys. Rev. Lett. 94, 018702 (2005)

    Article  ADS  Google Scholar 

  41. F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, Y. Aberg, Nature 411, 907 (2001)

    Article  ADS  Google Scholar 

  42. M.E.J. Newman, Phys. Rev. E 64, 016131 (2001)

    Article  ADS  Google Scholar 

  43. P. Holme, B.J. Kim, Phys. Rev. E 65, 026107 (2002)

    Article  ADS  Google Scholar 

  44. D.J.B. Soares, C. Tsallis, A.M. Mariz, L.R. da Silva, Europhys. Lett. 70, 70 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  45. R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)

    Article  ADS  Google Scholar 

  46. S.N. Dorogovtsev, Phys. Rev. E 69, 027104 (2004)

    Article  ADS  Google Scholar 

  47. M. Catanzaro, M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 71, 027103 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maurício L. de Almeida or Gabriel A. Mendes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Almeida, M., Mendes, G., Madras Viswanathan, G. et al. Scale-free homophilic network. Eur. Phys. J. B 86, 38 (2013). https://doi.org/10.1140/epjb/e2012-30802-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30802-x

Keywords

Navigation