Skip to main content
Log in

Linear and nonlinear optical absorption coefficients in inverse parabolic quantum wells under static external electric field

  • Regular Article
  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the present theoretical study, the linear and third-order nonlinear optical absorption coefficients have been calculated in GaAs/Ga1−x Al x As inverse parabolic quantum wells (single and double) subjected to an external electric field. Our calculations are based on the potential morphing method in the effective mass approximation. The systematic theoretical investigation contains results with all possible combinations of the involved parameters, as quantum well width, quantum barrier width, Al concentration at each well center and magnitude of the external electric field. Our results indicate that in most cases investigated, the increase of the electric field blue-shifts the peak positions of the total absorption coefficient. In all cases studied it became apparent that the incident optical intensity considerably affects the total absorption coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Yoffe, Adv. Phys. 42, 173 (1993)

    Article  ADS  Google Scholar 

  2. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, 1988)

  3. P. Harrison, Quantum Wells, Wires and Dots (Wiley, NY, 2006)

  4. L.L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974)

    Article  ADS  Google Scholar 

  5. R. Dingle, A.C. Gossard, W. Wiegmann, Phys. Rev. Lett. 33, 827 (1974)

    Article  ADS  Google Scholar 

  6. C. Mailhiot, Yia-Chung Chang, T.C. McGill, Phys. Rev. B 26, 4449 (1982)

    Article  ADS  Google Scholar 

  7. R.C. Miller, A.C. Gossard, O.A. Kleinman, O. Munteanu, Phys. Rev. B 29, 3740 (1984)

    Article  ADS  Google Scholar 

  8. Q. Guo, Y.P. Feng, H.C. Poon, C.K. Ong, Eur. Phys. J. B 9, 29 (1999)

    Article  ADS  Google Scholar 

  9. F.Q. Zhao, X.X. Liang, S.L. Ban, Eur. Phys. J. B 33, 3 (2003)

    Article  ADS  Google Scholar 

  10. Z.P. Wang, X.X. Liang, X. Wang, Eur. Phys. J. B 59, 41 (2007)

    Article  ADS  Google Scholar 

  11. Y.-B. Yu, S.-N. Zhu, K.-X. Guo, Phys. Lett. A 335, 175 (2005)

    Article  MATH  ADS  Google Scholar 

  12. E. Kasapoglu, H. Sari, I. Sökmen, Surf. Rev. Lett. 13, 397 (2006)

    Article  Google Scholar 

  13. E. Kasapoglu, I. Sökmen, Physica E 27, 198 (2005)

    Article  ADS  Google Scholar 

  14. K.K. Law, R.H. Yan, A.C. Gossard, J.L. Merz, J. Appl. Phys. 67, 6461 (1990)

    Article  ADS  Google Scholar 

  15. W.Q. Chen, S.M. Wang, T.G. Andersson, J.T. Thordson, Phys. Rev. B 48, 14264 (1993)

    Article  ADS  Google Scholar 

  16. W.Q. Chen, S.M. Wang, T.G. Andersson, J.T. Thordson, J. Appl. Phys. 74, 6247 (1993)

    Article  ADS  Google Scholar 

  17. S. Vlaev, V.R. Velasco, F. Garcia-Moliner, Phys. Rev. B 51, 7321 (1995)

    Article  ADS  Google Scholar 

  18. E. Kasapoglu, H. Sari, I. Sökmen, Physica B 390, 216 (2007)

    Article  ADS  Google Scholar 

  19. S. Baskoutas, A.F. Terzis, Physica E 40, 1367 (2008)

    Article  ADS  Google Scholar 

  20. S. Elagoz, P. Baser, U. Yahsi, Physica B 403, 3879 (2008)

    Article  ADS  Google Scholar 

  21. E. Kasapoglu, I. Sökmen, Phys. Lett. A 37, 56 (2007)

    Article  ADS  Google Scholar 

  22. S. Baskoutas, A.F Terzis, Eur. Phys. J. B 69, 237 (2009)

    Article  ADS  Google Scholar 

  23. S. Baskoutas, A.F Terzis, J. Comp. Theor. Nanosci. 7, 492 (2010)

    Article  Google Scholar 

  24. E. Kasapoglu, Physica E 41, 1222 (2009)

    Article  ADS  Google Scholar 

  25. E.M. Goldys, J.J. Shi, Phys. Status Solidi B 210, 237 (1998)

    Article  ADS  Google Scholar 

  26. I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)

    Article  ADS  Google Scholar 

  27. D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. 23, 2196 (1987)

    Article  ADS  Google Scholar 

  28. R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  29. D.A.B. Miller, Int. J. High Speed Electron. Syst. 1, 19 (1991)

    Article  Google Scholar 

  30. T.H. Hood, J. Lightwave Technol. 6, 743 (1988)

    Article  ADS  Google Scholar 

  31. I. Moreels, P. Kockaert, R. Van Deun, K. Driesenc, J. Loicq, D. Van Thourhoute, Z. Hens, J. Lumin. 121, 369 (2006)

    Article  Google Scholar 

  32. H. Yıldırım, M. Tomak, J. Appl. Phys. 99, 093103 (2006)

    Article  ADS  Google Scholar 

  33. M. Rieth, W. Schommers, S. Baskoutas, Int. J. Mod. Phys. B 16, 4081 (2002)

    Article  MATH  ADS  Google Scholar 

  34. S. Baskoutas, A.F. Terzis, E. Voutsinas, J. Comp. Theor. Nanosci. 1, 315 (2004)

    Article  Google Scholar 

  35. P.A. Ling, Trends in Quantum Dot Research (Nova Science Publishers, New York, 2005), pp. 93–124

  36. S. Baskoutas, A.F. Terzis, J. Appl. Phys. 98, 044309 (2005)

    Article  ADS  Google Scholar 

  37. S. Baskoutas, A.F. Terzis, J. Appl. Phys. 99, 013708 (2006)

    Article  ADS  Google Scholar 

  38. S. Baskoutas, Chem. Phys. Lett. 404, 107 (2005)

    Article  ADS  Google Scholar 

  39. S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Rev. B 74, 153306 (2006)

    Article  ADS  Google Scholar 

  40. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys.: Condens. Matter 19, 395024 (2007)

    Article  Google Scholar 

  41. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  42. I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Baskoutas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskoutas, S., Garoufalis, C. & Terzis, A.F. Linear and nonlinear optical absorption coefficients in inverse parabolic quantum wells under static external electric field. Eur. Phys. J. B 84, 241–247 (2011). https://doi.org/10.1140/epjb/e2011-20470-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20470-9

Keywords

Navigation