Skip to main content

Advertisement

Log in

Electronic structure of fluorides: general trends for ground and excited state properties

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic structure of fluorite crystals are studied by means of density functional theory within the local density approximation for the exchange correlation energy. The ground-state electronic properties, which have been calculated for the cubic structures CaF2, SrF2, BaF2, CdF2, HgF2, β-PbF2, using a plane waves expansion of the wave functions, show good comparison with existing experimental data and previous theoretical results. The electronic density of states at the gap region for all the compounds and their energy-band structure have been calculated and compared with the existing data in the literature. General trends for the ground-state parameters, the electronic energy-bands and transition energies for all the fluorides considered are given and discussed in details. Moreover, for the first time results for HgF2 have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Rubloff, Phys. Rev. B 5, 662 (1972)

    Article  ADS  Google Scholar 

  2. R.W.G. Wyckoff, Crystal Structures, 9th edn. (Interscience/John Wiley, New York, 1963), Vol. 1

  3. G. Cappellini, G. Satta, M. Palummo, G. Onida, Phys. Rev. B 64, 035104 (2001)

    Article  ADS  Google Scholar 

  4. G. Satta, G. Cappellini, V. Olevano, L. Reining, Phys. Rev. B 70, 195212 (2004)

    Article  ADS  Google Scholar 

  5. R. Tousey, Phys. Rev. 50, 1057 (1936)

    Article  ADS  Google Scholar 

  6. G.A. Samara, Phys. Rev. B 13, 4529 (1976)

    Article  ADS  Google Scholar 

  7. M. Scrocco, Phys. Rev. B 32, 1301 (1985)

    Article  ADS  Google Scholar 

  8. F.J. Weesner, J.C. Wright, J.J. Fontanella, Phys. Rev. B 33, 1372 (1986)

    Article  ADS  Google Scholar 

  9. I. Kosacki, J.M. Langer, Phys. Rev. B 33, 5972 (1986)

    Article  ADS  Google Scholar 

  10. S. Hull, D.A. Keen, Phys. Rev. B 58, 14837 (1998)

    Article  ADS  Google Scholar 

  11. M. Fujita, M. Itoh, Y. Bokumoto, H. Nakagawa, D.L. Alov, M. Kitaura, Phys. Rev. B 61, 15731 (2000)

    Article  ADS  Google Scholar 

  12. J.H. Burnett, Z.H. Levine, E.L. Shirley, Phys. Rev. B 64, 241102(R) (2001)

    Article  ADS  Google Scholar 

  13. M. Hostettler, D. Schwarzenbach, C.R. Chim. 8, 147 (2005)

    Article  Google Scholar 

  14. H. Okamoto, JPEDAV 29, 294 (2008)

    Article  Google Scholar 

  15. R. Srinivasan, Phys. Rev. 165 1054 (1968)

    Google Scholar 

  16. J.P. Albert, C. Jouanin, C. Gout, Phys. Rev. B 16, 4619 (1977)

    Article  ADS  Google Scholar 

  17. J. Kudrnovský, N.E. Christensen, J. Mašek, Phys. Rev. B 43, 12597 (1991)

    Article  ADS  Google Scholar 

  18. Y. Bouteiller, Phys. Rev. B 45, 8734 (1992)

    Article  ADS  Google Scholar 

  19. W.Y. Ching, F. Gan, M.-Z. Huang, Phys. Rev. B 52, 1596 (1995)

    Article  ADS  Google Scholar 

  20. T. Mattila, S. Pöykkö, R.M. Nieminen, Phys. Rev. B 56, 15665 (1997)

    Article  ADS  Google Scholar 

  21. E.L. Shirley, Phys. Rev. B 58, 9579 (1998)

    Article  ADS  Google Scholar 

  22. R. Jia, H. Shi, G. Borstel, J. Phys.: Condens. Matter 22, 055501 (2010)

    Article  ADS  Google Scholar 

  23. H. Shi, R.I. Eglitis, G. Borstel, J. Phys.: Condens. Matter 18, 8367 (2006)

    Article  ADS  Google Scholar 

  24. H. Shi, R.I. Eglitis, G. Borstel, Phys. Rev. B 72, 045109 (2005)

    Article  ADS  Google Scholar 

  25. L.X. Benedict, E.L. Shirley, Phys. Rev. B 59, 5441 (1999)

    Article  ADS  Google Scholar 

  26. H. Jiang, A. Costales, M.A. Blanco, M. Gu, R. Pandey, J.D. Gale, Phys. Rev. B 62, 803 (2000)

    Article  ADS  Google Scholar 

  27. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  29. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  30. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  31. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  32. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  33. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  34. G.B. Bachelet, M. Schlüter, Phys. Rev. B 25, 2103 (1982)

    Article  ADS  Google Scholar 

  35. M. Kaupp, H.G. von Schnering, Inorg. Chem. 33, 4718 (1994)

    Article  Google Scholar 

  36. D.D. Koelling, B.N. Harmon, J. Phys. C 10, 3107 (1977)

    Article  ADS  Google Scholar 

  37. H. Jiang, R. Orlando, M.A. Blanco, R. Pandey, J. Phys.: Condens. Matter 16, 3081 (2004)

    Article  ADS  Google Scholar 

  38. M. Nizam, Y. Bouteiller, B. Silvi, C. Pisani, M. Causà, R. Dovesi, J. Phys. C: Solid State Phys. 21, 5351 (1988)

    Article  ADS  Google Scholar 

  39. H.J. Monkhort, J.D. Park, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  40. A.I. Kalugin, V.V. Sobolev, Phys. Rev. B 71, 115112 (2005)

    Article  ADS  Google Scholar 

  41. R.C. Weast, Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1976)

  42. E. Deligoz, K. Colakoglu, Y.O. Ciftci, J. Alloys Compd. 438, 66 (2007)

    Article  Google Scholar 

  43. F. Ebert, H. Woitinek, Z. Anorg. Allg. Chem. 210, 269 (1933)

    Article  Google Scholar 

  44. A.P. Ayala, J. Phys.: Condens. Matter 13, 11741 (2001)

    Article  ADS  Google Scholar 

  45. X.W. Sun, Y.D. Chu, Z.J. Liu, Q.F. Chen, Q. Song, T. Song, Physica B 404, 158 (2009)

    Article  ADS  Google Scholar 

  46. C. Wong, D.E. Schulle, J. Phys. Chem. Solids 29, 1309 (1968)

    Article  ADS  Google Scholar 

  47. F.D. Murnaghan, Proc. Nat. Acad. Sci. 30, 244 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Y. Ma, M. Rohlfing, Phys. Rev. B 75, 205114 (2007)

    Article  ADS  Google Scholar 

  49. B.A. Orlowski, P. Plenkiewicz, Phys. Status Solidi B 126, 285 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cadelano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadelano, E., Cappellini, G. Electronic structure of fluorides: general trends for ground and excited state properties. Eur. Phys. J. B 81, 115–120 (2011). https://doi.org/10.1140/epjb/e2011-10382-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10382-1

Keywords

Navigation