Skip to main content
Log in

Spin filter effect and large magnetoresistance in the zigzag graphene nanoribbons

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The spin filter effect and magnetoresistance (MR) in the graphene nanoribbons with zigzag edges have been investigated by the non-equilibrium Green’s function method. Due to the spin-dependent current blocking effect, the ferromagnetic graphene/normal graphene junction can filter the spin in one direction, so a fully spin-polarized current is found. As the on-site energy μR in the right lead goes from negative to positive, the spin-down transmission would suddenly transforms from an `ON’ state to an `OFF’ state, however the spin-up transmission transforms from an `OFF’ state to an `ON’ state, so we can choose the current’s spin polarized direction by tuning μR. For the ferromagnetic graphene/ferromagnetic graphene junction the current for the antiparallel magnetization configuration is blocked, a very large MR is obtained. It is expected that these features may serve as a type of useful spintronic devices in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Gregorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005); K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nat. Phys. 2, 177 (2006)

    Article  ADS  Google Scholar 

  4. L. Sheng, D.N. Sheng, F.D.M. Haldane, Leon Balents, Phys. Rev. Lett. 99, 196802 (2007)

    Article  ADS  Google Scholar 

  5. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Falko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nat. Phys.2, 177 (2006)

    Article  Google Scholar 

  6. Y. Zhang, J.P. Small, M.E.S. Amori, P. Kim, Phys. Rev. Lett. 94, 176803 (2005)

    Article  ADS  Google Scholar 

  7. M.I. Katsnelson, K.S. novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  8. Melinda Y. Han, Barbaros Özyilmaz, Yuanbo Zhang, Philip Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  9. Zhihong Chen, Yu-Ming Lin, Michael J. Rooks, Phaedon Avouris, Physica E 40, 228 (2007)

    Article  ADS  Google Scholar 

  10. Qimin Yan, Bing Huang, Jie Yu, Fawei Zheng, Ji Zang, Jian Wu, Bing-Lin Gu, Feng Liu, Wenhui Duan, Nano Lett. 7, 1469 (2007)

    Article  ADS  Google Scholar 

  11. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  12. K. Wakabayashi, T. Aoki, Int. J. Mod. Phys. B 16, 4897 (2002)

    Article  ADS  Google Scholar 

  13. A. Rycerz, J. Tworzydlo, C.W. Beenakker, Nat. Phys. 3, 172 (2007)

    Article  Google Scholar 

  14. J. Tworzydo, I. Snyman, A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. B 76, 035411 (2007)

    Article  ADS  Google Scholar 

  15. A.R. Akhmerov, J.H. Bardarson, A. Rycerz, C.W.J. Beenakker, Phys. Rev. B 77, 205416 (2008)

    Article  ADS  Google Scholar 

  16. A. Cresti, G. Grosso, G.P. Parravicinim, Phys. Rev. B 77, 233402 (2008)

    Article  ADS  Google Scholar 

  17. D. Rainis, F. Taddei, F. Dolcini, M. Polini, R. Fazio, Phys. Rev. B 79, 115131 (2009)

    Article  ADS  Google Scholar 

  18. Q. Liang, J. Dong, Nanotechnology 19, 355706 (2008)

    Article  Google Scholar 

  19. G. Tkachov, Phys. Rev. B 79, 045429 (2009)

    Article  ADS  Google Scholar 

  20. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001); G.A. Prinz, Science 282, 1660 (1998); I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  21. E.W. Hill, A.K. Geim, K. Novoselov, F. Schedin, P. Blake, IEEE Trans. Magn. 42, 2694 (2006)

    Article  ADS  Google Scholar 

  22. N. Tombros, C. Jòzsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Nature 448, 571 (2007)

    Article  ADS  Google Scholar 

  23. H. Haugen, D.H. Hernando, A. Brataas, Phys. Rev. B 77, 115406 (2008)

    Article  ADS  Google Scholar 

  24. Y.G. Semenov, K.W. Kim, J.M. Zavada, Appl. Phys. Lett. 91, 153105 (2007)

    Article  ADS  Google Scholar 

  25. W.H. Wang, K. Pi, Y. Li, Y.F. Chiang, P. Wei, J. Shi, R.K. Kawakami, Phys. Rev. B 77, 020402(R) (2008)

    ADS  Google Scholar 

  26. T. Yokoyama, Phys. Rev. B 77, 073413 (2008)

    Article  ADS  Google Scholar 

  27. W.Y. Kim, K.S. Kim, Nat. Nanotechnol. 3, 408 (2008)

    Article  Google Scholar 

  28. B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Nat. Phys. 3, 192 (2007)

    Article  Google Scholar 

  29. E.H. Hwang, S. Das Sarma, Phys. Rev. B 80, 075417 (2009); Wei Han, W.H. Wang, K. Pi, K.M. McCreary, W. Bao, Yan Li, F. Miao, C.N. Lau, R.K. Kawakami, Phys. Rev. Lett. 102, 137205 (2009); F. Muñoz-Rojas, J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. Lett. 102, 136810 (2009); Y.G. Semenov, J.M. Zavada, K.W. Kim, Phys. Rev. B 77, 235415 (2008)

    Article  ADS  Google Scholar 

  30. Z.P. Niu, F.X. Li, B.G. Wang, L. Sheng, D.Y. Xing, Eur. Phys. J. B 66, 245 (2008)

    Article  ADS  Google Scholar 

  31. Y.-W. Son, M. Cohen, S.G. Louie, Nature 444, 347 (2006); Er-Jun Kan, Zhenyu Li, Jinlong Yang, J.G. Hou, Appl. Phys. Lett. 91, 243116 (2007); S. Dutta, S.K. Pati, J. Phys. Chem. B 112, 1333 (2008)

    Article  ADS  Google Scholar 

  32. For example, see Figure 1 of T.C. Li, S.P. Lu, Phys. Rev. B 77, 085408 (2008)

    Article  ADS  Google Scholar 

  33. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995)

  34. M.P.L. Sancho, J.M.L. Sancho, J. Rubio, J. Phys. F: Met. Phys. 14, 1205 (1984)

    Article  ADS  Google Scholar 

  35. J. Nakabayashi, D. Yamamoto, S. Kurihara, Phys. Rev. Lett. 102, 066803 (2009)

    Article  ADS  Google Scholar 

  36. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 329, 1229 (2008)

    Article  ADS  Google Scholar 

  37. G. Tkachov, Phys. Rev. B 76, 235409 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, Z., Xing, D. Spin filter effect and large magnetoresistance in the zigzag graphene nanoribbons. Eur. Phys. J. B 73, 139–143 (2010). https://doi.org/10.1140/epjb/e2009-00401-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00401-3

Keywords

Navigation