Skip to main content
Log in

First-principle study on energetics and electronic structure of a single copper atomic chain bound in carbon nanotube

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Under the generalized gradient approximation (GGA), the energy and electronic structure of a single copper atomic chain bound in an armchair (6, 6) or zigzag (10, 0) carbon nanotube (CNT) have been investigated by using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. The results show that both CNTs are nearly ideal to bind a single Cu atomic chain, especially on their center axis, although a very weak interaction still exits between the components of the combined systems. The accumulated charges between components of the combined system indicate Cu-CNT bonds may be regarded as very weakly covalent and the depleted charge from the Cu atomic chain has a 3d electron character. The restriction of the CNT makes the highest peak of the Cu atomic chain slightly shift towards the lower energy region, in reverse the strong metallic character of the Cu atomic chain also enhances the metallic character of the two combined systems. The appearance of a new peak near the Fermi level in the more concentrated Cu chain and consequently in the corresponding combined system, indicates their potential utilization in future nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Gulseren, T. Yildirim, S. Ciraci, Phys. Rev. B 68, 115419 (2003)

    Article  ADS  Google Scholar 

  2. A.H. Nevidomskyy, G. Csanyi, M.C. Payne, Phys. Rev. Lett. 91, 105502 (2003)

    Article  ADS  Google Scholar 

  3. J.W. Ding, X.H. Yan, J.X. Cao, Phys. Rev. B 66, 073401 (2002)

    Article  ADS  Google Scholar 

  4. N. Sano, M. Chhowalla, D. Roy, G.A.J. Amaratunga, Phys. Rev. B 66, 113403 (2002)

    Article  ADS  Google Scholar 

  5. J.J. Zhao, A. Buldum, J. Han, J.P. Lu, Phys. Rev. Lett. 85, 1706 (2000)

    Article  ADS  Google Scholar 

  6. Y. Liu, R.O. Jones, X. Zhao, Y. Ando, Phys. Rev. B 68, 125413 (2003)

    Article  ADS  Google Scholar 

  7. Y.L. Mao, X.H. Yan, Y. Xiao, J. Xiang, Y.R. Yang, H.L. Yu, Nanotechnology 15, 1000 (2004)

    Article  ADS  Google Scholar 

  8. M. Pudlak, R. Pincak, Eur. Phys. J. B 67, 565 (2009)

    Article  ADS  Google Scholar 

  9. J. González, E. Perfetto, Eur. Phys. J. B 51, 571 (2006)

    Article  ADS  Google Scholar 

  10. L. Mayrhofer, M. Grifoni, Eur. Phys. J. B 63, 43 (2008)

    Article  ADS  Google Scholar 

  11. W.Y. Choi, J.W. Kang, H.J. Hwang, Phys. Rev. B 68, 193405 (2003)

    Article  ADS  Google Scholar 

  12. M. Monthioux, Carbon 40, 1809 (2002)

    Article  Google Scholar 

  13. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Google Scholar 

  14. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklum, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996)

    Google Scholar 

  15. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  16. J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology 13, 195 (2002)

    Article  ADS  Google Scholar 

  17. M.R. Pederson, J.Q. Broughton, Phys. Rev. Lett. 69, 2689 (1992)

    Article  ADS  Google Scholar 

  18. V.V. Ivanovskaya, C. Köhler, G. Seifert, Phys. Rev. B 75,075410 (2007)

    Article  ADS  Google Scholar 

  19. A. Quintel, in Electronic Properties of Novel Material — Molecular, Nanostructures, edited by H. Kuzmany, J. Fink, M. Mehring, S. Roth, AIP Conf. Proc. 544, New York (2000)

  20. G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, Langmuir 15, 750 (1999)

    Article  Google Scholar 

  21. M. Ajayan, S. Iijima, Naure 361, 333 (1993)

    ADS  Google Scholar 

  22. S.C. Tsang, P.J.F. Harris, M.L.H. Green, Nature 362, 520 (1993)

    Article  ADS  Google Scholar 

  23. P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Huira, Nature 362, 522 (1993)

    Article  ADS  Google Scholar 

  24. S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature 372, 159 (1994)

    Article  ADS  Google Scholar 

  25. G.Y. Zhang, E.G. Wang, Appl. Phys. Lett. 82, 1926 (2003)

    Article  ADS  Google Scholar 

  26. X.R. Ye, Y. Lin, C. Wang, C.M. Wai, Adv. Mater. 15, 316 (2003)

    Article  Google Scholar 

  27. J.W. Kang, H.J. Hwang, K.O. Song, W.Y. Choi, K.R. Byun, J. Korean Phys. Soc. 43, 534 (2003)

    Google Scholar 

  28. G.C. McIntosh, D. Tománek, Y.W. Park, Phys. Rev. B 67, 125419 (2003)

    Article  ADS  Google Scholar 

  29. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  30. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  31. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  32. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  33. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  34. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  35. C. Jo, C. Kim, Y.H. Lee, Phys. Rev. B 65, 035420 (2002)

    Article  ADS  Google Scholar 

  36. Y. Miyamoto, S. Saito, D. Tománek, Phys. Rev. B 65, 041402 (2001)

    Article  ADS  Google Scholar 

  37. T. Koretsune, S. Saito, Phys. Rev. B 77, 165417 (2008)

    Article  ADS  Google Scholar 

  38. G.H. Jeong, A.A. Farajian, R. Hatakeyama, T. Hirata, T. Yaguchi, K. Tohji, H. Mizuseki, Y. Kawazoe, Phys. Rev. B 68, 075410 (2003)

    Article  ADS  Google Scholar 

  39. E. Jouguelet, C. Mathis, P. Petit, Chem. Phys. Lett. 318, 516 (2000)

    Article  Google Scholar 

  40. R.S. Lee, H.J. Kim, J.E. Fisher, Phys. Rev. B 61, 4526 (2000)

    Article  ADS  Google Scholar 

  41. B. Ruzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Bacsa, J.P. Salvetat, L. Forró, Phys. Rev. B 61, R2468 (2000)

    Article  ADS  Google Scholar 

  42. B. Shan, K. Cho, Phys. Rev. B 73, 081401 (2006)

    Article  ADS  Google Scholar 

  43. X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994)

    Article  ADS  Google Scholar 

  44. Y.W. Son, S. Oh, J. Ihm, S. Han, Nanotechnology 16, 125 (2005)

    Article  ADS  Google Scholar 

  45. S.P. Murarka, Mater. Sci. Eng. R19, 87 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, XJ., Zhang, JM., Wang, SF. et al. First-principle study on energetics and electronic structure of a single copper atomic chain bound in carbon nanotube. Eur. Phys. J. B 72, 119–126 (2009). https://doi.org/10.1140/epjb/e2009-00328-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00328-7

PACS

Navigation