Skip to main content
Log in

Synchronizability of chaotic logistic maps in delayed complex networks

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study a network of coupled logistic maps whose interactions occur with a certain distribution of delay times. The local dynamics is chaotic in the absence of coupling and thus the network is a paradigm of a complex system. There are two regimes of synchronization, depending on the distribution of delays: when the delays are sufficiently heterogeneous the network synchronizes on a steady-state (that is unstable for the uncoupled maps); when the delays are homogeneous, it synchronizes in a time-dependent state (that is either periodic or chaotic). Using two global indicators we quantify the synchronizability on the two regimes, focusing on the roles of the network connectivity and the topology. The connectivity is measured in terms of the average number of links per node, and we consider various topologies (scale-free, small-world, star, and nearest-neighbor with and without a central hub). With weak connectivity and weak coupling strength, the network displays an irregular oscillatory dynamics that is largely independent of the topology and of the delay distribution. With heterogeneous delays, we find a threshold connectivity level below which the network does not synchronize, regardless of the network size. This minimum average number of neighbors seems to be independent of the delay distribution. We also analyze the effect of self-feedback loops and find that they have an impact on the synchronizability of small networks with large coupling strengths. The influence of feedback, enhancing or degrading synchronization, depends on the topology and on the distribution of delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.H. Strogatz, Nature 410, 268 (2001)

  • See the special issue Pramana J. Phys. 70, 1 (2008): Proceedings of the Conference and Workshop on Perspectives in Nonlinear Dynamics (2007)

  • J.M. Montoya, S.L. Pimm, R.V. Sole, Nature 442, 259 (2006)

    Google Scholar 

  • D. Garlaschelli, G. Caldarelli, L. Pietronero, Nature 423, 165 (2003)

    Google Scholar 

  • H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.L. Barabasi, Nature 407, 651 (2000)

    Google Scholar 

  • N. Barkai, S. Leibler, Nature 387, 913 (1997)

    Google Scholar 

  • C.S. Zhou, L. Zemanova, G. Zamora et al., Phys. Rev. Lett. 97, 238103 (2006)

    Google Scholar 

  • V.M. Eguiluz, D.R. Chialvo, G.A. Cecchi, M. Baliki, A.V. Apkarian, Phys. Rev. Lett. 94, 018102 (2005)

    Google Scholar 

  • M. Kuperman, G. Abramson, Phys. Rev. Lett. 86, 2909 (2001)

    Google Scholar 

  • S. Eubank, H. Guclu, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang, Nature 429, 180 (2004)

  • R. Albert, H. Jeong, A.L. Barabasi, Nature 406, 378 (2000)

    Google Scholar 

  • G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Nature 435, 814 (2005)

    Google Scholar 

  • J.M. Kumpula, J.P. Onnela, J. Saramaki et al., Phys. Rev. Lett. 99, 228701 (2007)

    Google Scholar 

  • J.M. Buldu, P. Cano, M. Koppenberger, J.A. Almendral, S. Boccaletti, New J. Phys. 9, 172 (2007)

    Google Scholar 

  • N.J. Guido, X. Wang, D. Adalsteinsson, D. McMillen, J. Hasty, C.R. Cantor, T.C. Elston, J.J. Collins, Nature 439, 856 (2006)

    Google Scholar 

  • G.M. Suel, J. Garcia-Ojalvo, L.M. Liberman, M.B. Elowitz, Nature 440, 545 (2006)

    Google Scholar 

  • R. Guimera, L.A.N. Amaral, Nature 433, 895 (2005)

    Google Scholar 

  • S.C. Manrubia, A.S. Mikhailov, D.H. Zanette, Emergence of Dynamical Order. Synchronization Phenomena in Complex Systems (World Scientific, Singapore, 2004)

  • A.E. Motter, C. Zhou, J. Kurths, Phys. Rev. E 71, 016116 (2005)

    Google Scholar 

  • M. Chavez, D.U. Hwang, A. Amann, H.G.E. Hentschel, S. Boccaletti, Phys. Rev. Lett. 94, 218701 (2005)

    Google Scholar 

  • C.S. Zhou, J. Kurths, Phys. Rev. Lett. 96, 164102 (2006)

    Google Scholar 

  • T. Nishikawa, A.E. Motter, Y.C. Lai et al., Phys. Rev. Lett. 91, 014101 (2003)

    Google Scholar 

  • F.M. Atay, J. Jost, A. Wende, Phys. Rev. Lett. 92, 144101 (2004)

    Google Scholar 

  • R.M. May, Nature 261, 459 (1976)

  • The logistic map captures two key effects in population dynamics: (i) grow (the reproduction of a population will increase at a rate proportional to the present population size when the population size is small) and (ii) starvation (the growth rate will decrease at a rate proportional to the value obtained by taking the “carrying capacity” of the environment less the population size). The Logistic Map displays, depending on a parameter (which represents the combined rate for reproduction and starvation), either population extinction, stable population, periodic or chaotic oscillations

  • C. Masoller, A.C. Martí, Phys. Rev. Lett. 94, 134102 (2005)

    Google Scholar 

  • A.C. Martí, M. Ponce, C. Masoller, Physica A 371, 104 (2006)

    Google Scholar 

  • M.E.J. Newman, D.J. Watts, Phys. Rev. E 60, 7332 (1999); M.E.J. Newman, D.J. Watts, Phys. Lett. A 263, 341 (1999)

    Google Scholar 

  • R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Google Scholar 

  • M.G. Rosenblum, A.G. Pikovsky, Phys. Rev. Lett. 92, 114102 (2004)

    Google Scholar 

  • O.V. Popovych, V. Krachkovskyi, P.A. Tass, Int. J. Bif. Chaos 17, 2517 (2007)

    Google Scholar 

  • E. Klein, N. Gross, M. Rosenbluh, W. Kinzel, L. Khaykovich, I. Kanter, Phys. Rev. E 76, 066214 (2006)

    Google Scholar 

  • I.B. Schwartz, L.B. Shaw, Phys. Rev. E 75, 046207 (2007)

    Google Scholar 

  • T. Omi, S. Shinomoto, Phys. Rev. E 77, 046214 (2008)

    Google Scholar 

  • A.C. Martí, M. Ponce, C. Masoller, Phys. Rev. E 72, 066217 (2005)

    Google Scholar 

  • X. Gong, S. Guan, X. Wang, C.-H. Lai, Phys. Rev. E 77, 056212 (2008)

    Google Scholar 

  • R. Morgado, M. Ciesla, L. Longa, F.A. Oliveira, Europhys. Lett. 79, 10002 (2007)

    Google Scholar 

  • S. Kim, S.H. Park, C.S. Ryu, Phys. Rev. Lett. 79, 2911 (1997)

    Google Scholar 

  • A. Roxin, N. Brunel, D. Hansel, Phys. Rev. Lett. 94, 238103 (2005)

    Google Scholar 

  • P.G. Lind, A. Nunes, J.A.C. Gallas, Physica A 371, 100 (2006)

    Google Scholar 

  • R.L. Viana, C. Grebogi, S.E. de S. Pinto, S.R. Lopes, A.M. Batista, J. Kurths, Physica D 206, 94 (2005)

  • E. Ullner, A. Zaikin, E.I. Volkov, J. Garcia-Ojalvo, Phys. Rev. Lett. 99, 148103 (2007)

    Google Scholar 

  • S. Jalan, J. Jost, F.M. Atay, Chaos 16, 033124 (2006)

    Google Scholar 

  • C. Masoller, A.C. Martí, D.H. Zanette, Physica A 325, 186 (2003)

    Google Scholar 

  • C.M. Gonzalez, C. Masoller, C. Torrent, J. Garcia-Ojalvo, Europhys. Lett. 79, 64003 (2007)

    Google Scholar 

  • J.R. Sanchez, R. Lopez-Ruiz, Physica A 355, 633 (2005)

    Google Scholar 

  • O.A. Rosso, H.A. Larrondo, M.T. Martin, A. Plastino, M.A. Fuentes, Phys. Rev. Lett. 99, 154102 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo C. Martí.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce C., M., Masoller, C. & Martí, A. Synchronizability of chaotic logistic maps in delayed complex networks. Eur. Phys. J. B 67, 83–93 (2009). https://doi.org/10.1140/epjb/e2008-00467-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00467-3

PACS

Navigation