Skip to main content
Log in

Social behavior of bacteria: from physics to complex organization

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

I describe how bacteria develop complex colonial patterns by utilizing intricate communication capabilities, such as quorum sensing, chemotactic signaling and exchange of genetic information (plasmids) Bacteria do not store genetically all the information required for generating the patterns for all possible environments. Instead, additional information is cooperatively generated as required for the colonial organization to proceed. Each bacterium is, by itself, a biotic autonomous system with its own internal cellular informatics capabilities (storage, processing and assessments of information). These afford the cell certain plasticity to select its response to biochemical messages it receives, including self-alteration and broadcasting messages to initiate alterations in other bacteria. Hence, new features can collectively emerge during self-organization from the intra-cellular level to the whole colony. Collectively bacteria store information, perform decision make decisions (e.g. to sporulate) and even learn from past experience (e.g. exposure to antibiotics)-features we begin to associate with bacterial social behavior and even rudimentary intelligence. I also take Schrdinger’s’ “feeding on negative entropy” criteria further and propose that, in addition organisms have to extract latent information embedded in the environment. By latent information we refer to the non-arbitrary spatio-temporal patterns of regularities and variations that characterize the environmental dynamics. In other words, bacteria must be able to sense the environment and perform internal information processing for thriving on latent information embedded in the complexity of their environment. I then propose that by acting together, bacteria can perform this most elementary cognitive function more efficiently as can be illustrated by their cooperative behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dworkin, Microbiol. Rev. 60, 70 (1996)

    Google Scholar 

  2. E. Rosenberg Microbial ecology and infectious disease (ASM Press Washington, DC, 1999)

    Google Scholar 

  3. J.A. Shapiro, Bioessays 17, 597 (1995)

    Article  Google Scholar 

  4. J.A. Shapiro, M. Dworkin, Bacteria as Multicellular Organisms (Oxford University Press, 1997)

  5. J.A. Shapiro, Ann. Rev. Microbiology 52, 81 (1998)

    Article  Google Scholar 

  6. E. Ben-Jacob, Ann. Rev. Microbiology 52, 779 (1998)

    Article  Google Scholar 

  7. E. Ben-Jacob, I. Cohen, H. Levine, Adv. Phys. 49, 395 (2000)

    Article  ADS  Google Scholar 

  8. E. Ben-Jacob, Phil. Trans. R. Soc. Lond. A 361, 1283 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Ben-Jacob et al. Trends. Microbiol. 12, 366 (2004)

    Article  Google Scholar 

  10. H. Levine, E. Ben-Jacob, J. Physical Biology 1, 14 (2004)

    Article  ADS  Google Scholar 

  11. E. Ben-Jacob, Y. Shapira, The Cradle of Creativity (in press)

  12. E. Ben-Jacob, Y. Aharonov, Y. Shapira, J. Biofilm 1, 239 (2005)

    Article  Google Scholar 

  13. E. Ben-Jacob, Y. Shapira, A.I. Tauber, Physica A 359, 495 (2006)

    Article  ADS  Google Scholar 

  14. E. Ben-Jacob, H. Levine, J.R. Soc. Interface 3, 197 (2006)

    Article  Google Scholar 

  15. E. Ben-Jacob et al., Physica A 282, 247 (2000)

    Article  ADS  Google Scholar 

  16. I. Golding, E. Ben-Jacob, Coherent Structures in Complex Systems (Springer-Verlag, Heidelberg, 2001)

    Book  Google Scholar 

  17. D.A. Kessler, J. Koplik, H. Levine, Adv. Phys. 37, 255 (1988)

    Article  ADS  Google Scholar 

  18. J.S. Langer, Science 243, 1150 (1989)

    Article  ADS  Google Scholar 

  19. E. Ben-Jacob, P. Garik, Nature 33, 523 (2000)

    Google Scholar 

  20. E. Ben-Jacob, Contemp. Phys. 34, 247 (1993)

    Article  ADS  Google Scholar 

  21. P. Ball, The self-made tapestry-Pattern formation in nature (Oxford University Press, 1999)

  22. L.P. Macfadyen, C. Ma, R.J. Redfield, J. Bacteriol. 180, 4401 (1998)

    Google Scholar 

  23. I. Bdejov et al., Science 30, 1404 (2003)

    ADS  Google Scholar 

  24. M. Ptashne, A. Gann, Nature 420, 211 (2002)

    Article  Google Scholar 

  25. E.O. Budrene, H.C. Berg, Nature 349, 630 (1991)

    Article  ADS  Google Scholar 

  26. Y. Blat, M. Eisenbach, J. Bacteriol. 177, 1683 (1995)

    Google Scholar 

  27. E.O. Budrene, H.C. Berg, Nature 376, 49 (1995)

    Article  ADS  Google Scholar 

  28. E. Ben-Jacob et al., Nature 373, 566 (1995)

    Article  ADS  Google Scholar 

  29. M.B. Miller, Cell 110, 303 (2002)

    Article  Google Scholar 

  30. K.C. Mok, N.S. Wingreen, B.L. Bassler, EMBO J. 22, 870 (2003)

    Article  Google Scholar 

  31. R. Wirth et al., Trends. Microbiol. 4, 96 (1996)

    Article  Google Scholar 

  32. E. Ben-Jacob et al., Nature 368, 46 (2004)

    Article  ADS  Google Scholar 

  33. Y. Kozlovsky, I. Cohen, I. Golding, E. Ben-Jacob, Phys. Rev. E 59, 7025 (1999)

    Article  ADS  Google Scholar 

  34. E. Ben-Jacob et al. Modeling branching and chiral colonial patterning of lubrication bacteria, edited by P.V. Maini, H.G. Othmer (Springer, 2000)

  35. A. Komoto, J. Theo, Biology 225, 91 (2003)

    Google Scholar 

  36. I. Cohen, I.G. Ron, E. Ben-Jacob, Physica A 286, 321 (2000)

    Article  ADS  Google Scholar 

  37. I. Cohen, A. Czirok, E. Ben-Jacob, Physica A 233, 678 (1996)

    Article  ADS  Google Scholar 

  38. A. Czirok et al., Phys. Rev. E 54, (1996)

  39. C.J. Ingham, E. Ben-Jacob, Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells BMC Microbiology (in press)

  40. J.A. Shapiro, Genetica 86, 99 (1992)

    Article  Google Scholar 

  41. E. Ben-Jacob, Physica A 248, 57 (1998)

    Article  ADS  Google Scholar 

  42. L. Kari, L.F. Landweber, Biocomputing in cilliates, in Cellular Computing, edited by M. Amos (Oxford University Press, 2003)

  43. W. Makalowski, Science 300, 1246 (2003)

    Article  Google Scholar 

  44. D.P. Bartel, Cell 116, 261 (2004)

    Article  Google Scholar 

  45. D.H. Lenz, et al., Cell 118, 69 (2004)

    Article  Google Scholar 

  46. R. Wesson, Beyond Natural Selection (The MIT Press, London, 1993)

    Google Scholar 

  47. Bacterial images and video clips are available from PhysicaPlus-the online magazine of the Israel Physical Society http://physicaplus.org.il and at Ben Jacob’s home page: http://star.tau.ac.il/~eshel/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ben-Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Jacob, E. Social behavior of bacteria: from physics to complex organization. Eur. Phys. J. B 65, 315–322 (2008). https://doi.org/10.1140/epjb/e2008-00222-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00222-x

PACS

Navigation