Skip to main content
Log in

Abstract.

Recent theoretical and empirical studies have focused on the topology of large networks of communication/interactions in biological, social and technological systems. Most of them have been studied in the scope of the small-world and scale-free networks’ theory. Here we analyze the characteristics of ant networks of galleries produced in a 2-D experimental setup. These networks are neither small-worlds nor scale-free networks and belong to a particular class of network, i.e. embedded planar graphs emerging from a distributed growth mechanism. We compare the networks of galleries with both minimal spanning trees and greedy triangulations. We show that the networks of galleries have a path system efficiency and robustness to disconnections closer to the one observed in triangulated networks though their cost is closer to the one of a tree. These networks may have been prevented to evolve toward the classes of small-world and scale-free networks because of the strong spatial constraints under which they grow, but they may share with many real networks a similar trend to result from a balance of constraints leading them to achieve both path system efficiency and robustness at low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  Google Scholar 

  2. S. Bornholdt, H.G. Schuster, Handbook of Graphs and Networks: from the genome to the internet (Wiley-VCH, Berlin, 2003)

  3. M.E.J. Newman, Siam Rev. 45, 167 (2003)

    MATH  Google Scholar 

  4. D.J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness (Princeton University Press, Princeton, 1999)

  5. L.A.N. Amaral, A. Scala, M. Barthelemy et al. , Proc. Natl. Acad. Sci. USA 97, 11149 (2000)

    Article  Google Scholar 

  6. R.V. Solé, R. Ferrer i Cancho, J.M. Montoya et al. , Complexity 8, 20 (2002)

    Article  Google Scholar 

  7. R. Ferrer i Cancho, C. Janssen, R. Solé, Phys. Rev. E 64, 046119 (2001)

    Article  Google Scholar 

  8. E. Schaur, Non-planned Settlements (Institute for Lightweight Structures, Stuttgart, 1992)

  9. D. Helbing, F. Schweitzer, J. Keltsch et al. , Phys. Rev. E 56, 2527 (1997)

    Article  Google Scholar 

  10. K.N. Ganeshaiah, T. Veena, Behav. Ecol. Sociobiol. 29, 263 (1991)

    Article  Google Scholar 

  11. F. Lopez, F.J. Acosta, J.M. Serrano, J. Anim. Ecol. 63, 127 (1994)

    Google Scholar 

  12. G. Délye, Insect. Soc. 18, 15 (1971)

    Google Scholar 

  13. G. Thomé, Insect. Soc. 19, 95 (1972)

    Google Scholar 

  14. M. Brian, Social insects: Ecology and Behavioural Biology (Chapman and Hall, London, 1983)

  15. P. Cerdan, Ph.D. thesis, Université de Provence, Aix-Marseille I, 1989

  16. P. Rasse, Ph.D. thesis, Université Libre de Bruxelles, Brussels, 1999

  17. D. Cassill, W.R. Tschinkel, S.B. Vinson, Insect. Soc. 49, 158 (2002)

    Article  Google Scholar 

  18. W.R. Tschinkel, Insect. Soc. 34, 143 (1987)

    Google Scholar 

  19. W.R. Tschinkel, Ecol. Entomol. 24, 222 (1999)

    Article  Google Scholar 

  20. A.S. Mikheyev, W.R. Tschinkel, Insect. Soc. 41, 30 (2004)

    Article  Google Scholar 

  21. W.R. Tschinkel, Palaeogeogr. Palaeoclimatol. Palaeoecol. 192, 321 (2003)

    Article  Google Scholar 

  22. T. Nishizeki, N. Chiba, Planar Graphs; Theory and Algorithms (North-Holland, Amsterdam, 1988)

  23. G. Caldarelli, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 38, 183 (2004)

    Google Scholar 

  24. B. Bollobas, Random graphs, 2nd edn. (Cambridge University Press, Cambridge, 2002)

  25. A. Denise, M. Vasconcellos, D.J.A. Welsh, Congressus Numerantium 113, 61 (1996)

    MATH  Google Scholar 

  26. D. Osthus, H.J. Promel, A. Taraz, J. Comb. Theory B 88, 119 (2003)

    Article  MATH  Google Scholar 

  27. I. Rodriguez-Iturbe, A. Rinaldo, Fractal river basins: chance and self-organization (Cambridge University Press, Cambridge, 1997)

  28. E.W. Dijkstra, Numer. Math. 1, 269 (1959)

    MATH  Google Scholar 

  29. J.B. Kruskal, Proc. Amer. Math. Soc. 2, 48 (1956)

    Google Scholar 

  30. D. Cheriton, R.E. Tarjan, SIAM J. Computing 5, 724 (1976)

    MATH  Google Scholar 

  31. M. de Berg, M. van Kreveld, M. Overmars et al. , Computational geometry, 2nd rev. edn. (Springer, Berlin, 2000)

  32. M. Garey, D. Johnson, Computers and intractability, a guide to the theory of NP-Completedness (W.H. Freeman, New York, 1979)

  33. C. Levcopoulos, A. Lingas, Algorithmica 2 (1987)

  34. V. Latora, M. Marchiori, Eur. Phys. J. B 32, 249 (2003)

    Google Scholar 

  35. R. Albert, H. Jeong, A.L. Barabasi, Nature 406, 378 (2000)

    Article  Google Scholar 

  36. P. Holme, B.J. Kim, C.N. Yoon et al. , Phys. Rev. E 65, 056109 (2002)

    Article  Google Scholar 

  37. H. Jeong, S.P. Mason, A.L. Barabasi et al. , Nature 411, 41 (2001)

    Article  Google Scholar 

  38. R.V. Solé, J.M. Montoya, Proc. R. Soc. Lond. B Biol. Sci. 268, 2039 (2001)

    Article  Google Scholar 

  39. J.A. Dunne, R.J. Williams, N.D. Martinez, Ecol. Lett. 5, 558 (2002)

    Article  Google Scholar 

  40. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  Google Scholar 

  41. M. Kaiser, C.C. Hilgetag, Phys. Rev. E 69, 036103 (2004)

    Article  Google Scholar 

  42. S.S. Manna, A. Kabakçiuglu, J. Phys. A 36, L279 (2003)

  43. G. Bianconi, Eur. Phys. J. B 38, 223 (2004)

    Google Scholar 

  44. D. Garlaschelli, Eur. Phys. J. B 38, 277 (2004)

    Google Scholar 

  45. B. Hölldobler, E.O. Wilson, The ants (Springer, Berlin Heidelberg, New York, 1990)

  46. P.P. Grassé, Termitologia, Tome II, Fondation des Sociétés. Construction (Masson, Paris, 1984)

  47. K.C. Davies, J.U.M. Jarvis, J. Zool. Lond. 209, 125 (1986)

    Google Scholar 

  48. S.C. Le Comber, A.C. Spinks, N.C. Bennett et al. , Can. J. Zool. 80, 436 (2002)

    Article  Google Scholar 

  49. A. Forel, Neue Denkschr. Allg. Schweiz. Ges. Gesammten Naturwiss. 26, 1 (1874)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Buhl.

Additional information

Received: 16 July 2004, Published online: 26 November 2004

PACS:

89.75.Fb Structures and organization in complex systems - 89.75.Hc Networks and genealogical trees - 87.23.Ge Dynamics of social systems

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhl, J., Gautrais, J., Solé, R.V. et al. Efficiency and robustness in ant networks of galleries. Eur. Phys. J. B 42, 123–129 (2004). https://doi.org/10.1140/epjb/e2004-00364-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00364-9

Keywords

Navigation